Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 15(4)2022 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-35208127

RESUMO

In this paper, a lead-bronze/steel bimetal composite was produced by vacuum diffusion welding technology. The microstructure, hardness and tribological properties under the dry sliding condition of the bimetal structured material were investigated and compared with two reference samples, i.e., lead-bronze and Mn/Si-brass. The wear mechanism of the three materials was also analyzed in detail. It was found that the bimetallic structure possessed the best wear resistance among the three samples. When paired with the ball bearing steel, the wear rates of the lead-bronze and Mn/Si-brass were 13 and 54 times higher than that of the bimetal composite. When paired with bearing steel, the wear rates of the two materials were 13 and 54 times higher than the bimetallic composite, respectively. This is because the steel layer served as a bearing layer to decrease the plastic deformation of the bronze layer. Furthermore, the lead can accelerate the formation of a dense hardened layer at the sliding interfaces to avoid subsequent wear of the bronze surface. Nevertheless, this hardened layer caused severe scuffing on the steel balls. Therefore, lead-bronze/steel structured material is recommended to match with hard counterface material, such as cemented carbide.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...