Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Cell Physiol ; 236(4): 2482-2504, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-32959907

RESUMO

Members of the soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) family mediate membrane fusion processes associated with vesicular trafficking and autophagy. SNAREs mediate core membrane fusion processes essential for all cells, but some SNAREs serve cell/tissue type-specific exocytic/endocytic functions, and are therefore critical for various aspects of embryonic development. Mutations or variants of their encoding genes could give rise to developmental disorders, such as those affecting the nervous system and immune system in humans. Mutations to components in the canonical synaptic vesicle fusion SNARE complex (VAMP2, STX1A/B, and SNAP25) and a key regulator of SNARE complex formation MUNC18-1, produce variant phenotypes of autism, intellectual disability, movement disorders, and epilepsy. STX11 and MUNC18-2 mutations underlie 2 subtypes of familial hemophagocytic lymphohistiocytosis. STX3 mutations contribute to variant microvillus inclusion disease. Chromosomal microdeletions involving STX16 play a role in pseudohypoparathyroidism type IB associated with abnormal imprinting of the GNAS complex locus. In this short review, I discuss these and other SNARE gene mutations and variants that are known to be associated with a variety developmental disorders, with a focus on their underlying cellular and molecular pathological basis deciphered through disease modeling. Possible pathogenic potentials of other SNAREs whose variants could be disease predisposing are also speculated upon.


Assuntos
Doenças do Sistema Imunitário/genética , Mutação , Transtornos do Neurodesenvolvimento/genética , Proteínas SNARE/genética , Animais , Exocitose , Regulação da Expressão Gênica no Desenvolvimento , Predisposição Genética para Doença , Humanos , Doenças do Sistema Imunitário/metabolismo , Doenças do Sistema Imunitário/fisiopatologia , Transtornos do Neurodesenvolvimento/metabolismo , Transtornos do Neurodesenvolvimento/fisiopatologia , Fenótipo , Transporte Proteico , Proteínas SNARE/metabolismo , Vesículas Secretórias/genética , Vesículas Secretórias/metabolismo
2.
J Cell Physiol ; 233(9): 6483-6494, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29377137

RESUMO

Rab GTPases are key regulators of eukaryotic membrane traffic, and their functions and activities are limited to particular intracellular transport steps and their membrane localization is by and large restricted. Some Rabs do participate in more than one transport steps, but broadly speaking, there is a clear demarcation between exocytic and endocytic Rabs. One Rab protein, Rab10, however, appears to be anomalous in this regard and has a diverse array of functions and subcellular localizations. Rab10 has been implicated in a myriad of activities ranging from polarized exocytosis and endosomal sorting in polarized cells, insulin-dependent Glut4 transport in adipocytes, axonal growth in neurons, and endo-phagocytic processes in macrophages. It's reported subcellular localizations include the endoplasmic reticulum (ER), Golgi/TGN, the endosomes/phagosomes and the primary cilia. In this review, we summarize and discuss the multitude of known roles of Rab10 in cellular membrane transport and the molecular players and mechanisms associated with these roles.


Assuntos
Transporte Proteico/fisiologia , Proteínas rab de Ligação ao GTP/metabolismo , Animais , Membrana Celular/metabolismo , Retículo Endoplasmático/metabolismo , Retículo Endoplasmático/fisiologia , Complexo de Golgi/metabolismo , Complexo de Golgi/fisiologia , Humanos
4.
Front Cell Neurosci ; 10: 228, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27774051

RESUMO

Hexanucleotide repeat expansion in an intron of Chromosome 9 open reading frame 72 (C9orf72) is the most common genetic cause of Amyotrophic Lateral Sclerosis (ALS) and Frontotemporal Dementia (FTD). While functional haploinsufficiency of C9orf72 resulting from the mutation may play a role in ALS/FTD, the actual cellular role of the protein has been unclear. Recent findings have now shown that C9orf72 physically and functionally interacts with multiple members of the Rab small GTPases family, consequently exerting important influences on cellular membrane traffic and the process of autophagy. Loss of C9orf72 impairs endocytosis in neuronal cell lines, and attenuated autophagosome formation. Interestingly, C9orf72 could influence autophagy both as part of a Guanine nucleotide exchange factor (GEF) complex, or as a Rab effector that facilitates transport of the Unc-51-like Autophagy Activating Kinase 1 (Ulk1) autophagy initiation complex. The cellular function of C9orf72 is discussed in the light of these recent findings.

5.
Front Microbiol ; 6: 816, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26300879
6.
Front Cell Dev Biol ; 2: 32, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25364739
7.
Front Cell Neurosci ; 7: 186, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24167473

RESUMO

Sirt1, the class III histone deacetylase, is generally associated with increased life span and with a pro-survival effect in neurons stressed by pathological factors. Recent work, however, suggests that Sirt1 silencing could also promote neuronal survival. A possible reason suggested is Sirt1 silencing enhanced expression of both IGF-1 and IGF-1 receptor, signaling from which promotes survival. This work adds to the small but steady stream of findings that are diametrically opposite to the overwhelmingly large amount of evidence supporting a beneficial effect of sustaining or enhancing Sirt1 activity in neuronal injuries and diseases. We attempt to reconcile this discrepancy below by noting evidence that elevated Sirt1 levels and/or activity may not help, and could even adversely exacerbates demise, during events of acute neuronal damage or death. However, sustained Sirt1 activation will be beneficial in situations of chronic and long-term sub-lethal stresses, and the status of IGF-1 signaling may influence Sirt1 action in a context dependent manner.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...