Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 267(Pt 2): 131538, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38621572

RESUMO

Lignin is continuously investigated by various techniques for valorization due to its high content of oxygen-containing functional groups. Catalytic systems employing hydrolysis­hydrogenolysis, leveraging the synergistic effect of redox metal sites and acid sites, exhibit efficient degradation of lignin. The predominance of either hydrolysis or hydrogenolysis reactions hinges upon the relative activity of acid and metal sites, as well as the intensity of the reductive atmosphere. In this study, the Pd-MoOx/TiO2 catalyst was found to primarily catalyze hydrolysis in the lignin depolymerization process, attributed to the abundance of moderate acidic sites on Pd and the redox-assisted catalysis of MoOx under inert conditions. After subjecting the reaction to 240 °C for 30 h, a yield of 48.22 wt% of total phenolic monomers, with 5.90 wt% consisting of diphenols, was achieved. Investigation into the conversion of 4-propylguaiacol (4-PG), a major depolymerized monomer of corncob lignin, revealed the production of ketone intermediates, a phenomenon closely linked to the unique properties of MoOx. Dehydrogenation of the propyl is a key step in initiating the reaction, and 4-PG could be almost completely transformed, accompanied by an over 97 % of 4-propylcatechol selectivity. This distinctive system lays a new theoretical groundwork for the eco-friendly valorization of lignin.


Assuntos
Lignina , Paládio , Titânio , Lignina/química , Hidrólise , Catálise , Titânio/química , Paládio/química , Hidrogênio/química , Molibdênio/química , Oxirredução , Óxidos/química
2.
Huan Jing Ke Xue ; 44(8): 4655-4665, 2023 Aug 08.
Artigo em Chinês | MEDLINE | ID: mdl-37694658

RESUMO

Land use/cover change (LUCC) is the main factor leading to the change in carbon stock of terrestrial ecosystems. Studying the process of land use and carbon storage change under different scenarios in the future will help to formulate scientific land use policies and increase regional terrestrial ecosystem carbon storage. The GMMOP-PLUS-InVEST model was constructed to analyze the change characteristics of land use and carbon storage in northwest China from 2000 to 2020 through multi-source data and to predict the land use and carbon storage in northwest China in 2030 under the scenarios of natural development (ND), economic development (ED), ecological protection (EP), and comprehensive development (CD). The results showed that:①from 2000 to 2020, the area of grassland decreased by 1680.99×104 hm2, and the area of cultivated land, forest land, water area, wetland, construction land, and unused land increased by 201.19×104, 208.47×104, 91.54×104, 51.30×104, 157.40×104, and 971.09×104 hm2, respectively. ②From 2000 to 2020, soil and underground carbon storage decreased, dead organic matter and aboveground carbon storage increased, and total carbon storage decreased by 677.97×106 t. Grassland degradation was the main reason for the decrease in carbon storage. ③Compared to that in 2020, the total carbon storage in the ND scenario was reduced by 63.12×106 t, and the total carbon storage in the ED, EP, and CD scenarios increased by 759.19×106, 804.57×106, and 817.89×106 t, respectively; the CD scenario was the optimal development model. These results can provide a reference for regional land use planning and the increase of terrestrial ecosystem carbon storage.

3.
Front Plant Sci ; 14: 1192417, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37441177

RESUMO

Sweet potato [Ipomoea batatas (L.) Lam.] is an important food and industrial crop. Its storage root is rich in starch, which is present in the form of granules and represents the principal storage carbohydrate in plants. Starch content is an important trait of sweet potato controlling the quality and yield of industrial products. Vacuolar invertase encoding gene Ibßfruct2 was supposed to be a key regulator of starch content in sweet potato, but its function and regulation were unclear. In this study, three Ibßfruct2 gene members were detected. Their promoters displayed differences in sequence, activity, and cis-regulatory elements and might interact with different transcription factors, indicating that the three Ibßfruct2 family members are governed by different regulatory mechanisms at the transcription level. Among them, we found that only Ibßfruct2-1 show a high expression level and promoter activity, and encodes a protein with invertase activity, and the conserved domains and three conserved motifs NDPNG, RDP, and WEC are critical to this activity. Only two and six amino acid residue variations were detected in sequences of proteins encoded by Ibßfruct2-2 and Ibßfruct2-3, respectively, compared with Ibßfruct2-1; although not within key motifs, these variations affected protein structure and affinities for the catalytic substrate, resulting in functional deficiency and low activity. Heterologous expression of Ibßfruct2-1 in Arabidopsis decreased starch content but increased glucose content in leaves, indicating Ibßfruct2-1 was a negative regulator of starch content. These findings represent an important advance in understanding the regulatory and functional divergence among duplicated genes in sweet potato, and provide critical information for functional studies and utilization of these genes in genetic improvement.

4.
Plant Physiol Biochem ; 201: 107815, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37301188

RESUMO

As a key enzyme in the starch and sugar metabolic pathways in sweet potato (Ipomoea batatas (L.) Lam.), the vacuolar invertase (EC 3.2.1.26) IbßFRUCT2 is involved in partitioning and modulating the starch and sugar components of the storage root. However, the post-translational regulation of its invertase activity remains unclear. In this study, we identified three invertase inhibitors, IbInvInh1, IbInvInh2, and IbInvInh3, as potential interaction partners of IbßFRUCT2. All were found to act as vacuolar invertase inhibitors (VIFs) and belonged to the plant invertase/pectin methyl esterase inhibitor superfamily. Among the three VIFs, IbInvInh2 is a novel VIF in sweet potato and was confirmed to be an inhibitor of IbßFRUCT2. The N-terminal domain of IbßFRUCT2 and the Thr39 and Leu198 sites of IbInvInh2 were predicted to be engaged in their interactions. The transgenic expression of IbInvInh2 in Arabidopsis thaliana plants reduced the starch content of leaves, while its expression in the Ibßfruct2-expressing Arabidopsis plants increased the starch content of leaves, suggesting that the post-translational inhibition of IbßFRUCT2 activity by IbInvInh2 contributes to the regulation of the plant starch content. Taken together, our findings reveal a novel VIF in sweet potato and provide insights into the potential regulatory roles of the VIFs and invertase-VIF interaction in starch metabolism. These insights lay the foundation for using VIFs to improve the starch properties of crops.


Assuntos
Ipomoea batatas , Amido , Amido/metabolismo , Ipomoea batatas/metabolismo , beta-Frutofuranosidase/genética , beta-Frutofuranosidase/metabolismo , Metabolismo dos Carboidratos , Açúcares/metabolismo , Regulação da Expressão Gênica de Plantas
5.
Plants (Basel) ; 12(4)2023 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-36840304

RESUMO

Sweet potato virus disease (SPVD) is one of the main virus diseases in sweet potato [Ipomoea batatas (L.) Lam] that seriously affects the yield of sweet potato. Therefore, the establishment of a simple, rapid and effective method to detect SPVD is of great significance for the early warning and prevention of this disease. In this study, the experiment was carried out in two years to compare the grafting method and side grafting method for three sweet potato varieties, and the optimal grafting method was selected. After grafting with seedlings infected with SPVD, the symptomatic diagnosis and serological detection were performed in 86 host varieties, and the differences in SPVD resistance were determined by fluorescence quantitative PCR (qRT-PCR) and nitrocellulose membrane enzyme-linked immunosorbent assay (NCM-ELISA). The results showed that the survival rate of grafting by insertion method was significantly higher than that by side grafting method, and the disease resistance of different varieties to sweet potato virus disease was tested. The detection method established in this study can provide theoretical basis for identification and screening of resistant sweet potato varieties.

6.
Int J Biol Macromol ; 190: 72-85, 2021 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-34480907

RESUMO

Lignin is the only renewable aromatic material in nature and contains a large number of oxygen-containing functional groups. High-value and green utilization of "lignin-to-chemicals" can be realized via using lignin to produce fine chemicals such as phenols and carboxylic acids, which can not only reduce the waste of lignin in the process of lignocellulosic biomass treatment, but gradually make the substitution of traditional fossil fuels come true. The hydrogenolysis process under catalysis of metal catalyst has high product selectivity and less impurity, which is suitable for the production of same type or single fine chemicals. Hydrogenolysis of lignin via metal catalysts to produce lignin oil, and further modification of functional groups (e.g. methoxyl, alkyl and hydroxyl group) of depolymerized monomers in the bio-oil to yeild phenols and terephthalic acid are reviewed, and catalytic mechanisms are briefly summarized in this paper. Finally, the problems of lignin catalytic conversion existing currently are investigated, and the future development of this field is also prospected.


Assuntos
Hidrogênio/química , Lignina/química , Metais/química , Fenóis/química , Ácidos Ftálicos/química , Catálise
7.
Plants (Basel) ; 9(4)2020 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-32290324

RESUMO

Sweet potato virus disease (SPVD) is the most devastating viral disease in sweet potato (Ipomoea batatas (L.) Lam.), causing substantial yield losses worldwide. We conducted a systemic investigation on the spread, transmission, and pathogenesis of SPVD. Field experiments conducted over two years on ten sweet potato varieties showed that SPVD symptoms first occurred in newly developed top leaves, and spread from adjacent to distant plants in the field. The SPVD incidence was mainly (but not only) determined by the resistance of the varieties planted, and each variety exhibited a characteristic subset of SPVD symptoms. SPVD was not robustly transmitted through friction inoculation, but friction of the main stem might contribute to a higher SPVD incidence rate compared to friction of the leaf and branch tissues. Furthermore, our results suggested that SPVD might be latent in the storage root. Therefore, using virus-free storage roots and cuttings, purposeful monitoring for SPVD according to variety-specific symptoms, and swiftly removing infected plants (especially during the later growth stages) would help control and prevent SPVD during sweet potato production. Comparative transcriptome analysis revealed that numerous genes involved in photosynthesis, starch and sucrose metabolism, flavonoid biosynthesis, and carotenoid biosynthesis were downregulated following SPVD, whereas those involved in monolignol biosynthesis, zeatin biosynthesis, trehalose metabolism, and linoleic acid metabolism were upregulated. Notably, critical genes involved in pathogenesis and plant defense were significantly induced or suppressed following SPVD. These data provide insights into the molecular changes of sweet potato in response to SPVD and elucidate potential SPVD pathogenesis and defense mechanisms in sweet potato. Our study provides important information that can be used to tailor sustainable SPVD control strategies and guide the molecular breeding of SPVD-resistant sweet potato varieties.

8.
Front Plant Sci ; 8: 914, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28690616

RESUMO

The starch properties of the storage root (SR) affect the quality of sweet potato (Ipomoea batatas (L.) Lam.). Although numerous studies have analyzed the accumulation and properties of starch in sweet potato SRs, the transcriptomic variation associated with starch properties in SR has not been quantified. In this study, we measured the starch and sugar contents and analyzed the transcriptome profiles of SRs harvested from sweet potatoes with high, medium, and extremely low starch contents, at five developmental stages [65, 80, 95, 110, and 125 days after transplanting (DAP)]. We found that differences in both water content and starch accumulation in the dry matter affect the starch content of SRs in different sweet potato genotypes. Based on transcriptome sequencing data, we assembled 112336 unigenes, and identified several differentially expressed genes (DEGs) involved in starch and sucrose metabolism, and revealed the transcriptional regulatory network controlling starch and sucrose metabolism in sweet potato SRs. Correlation analysis between expression patterns and starch and sugar contents suggested that the sugar-starch conversion steps catalyzed by sucrose synthase (SuSy) and UDP-glucose pyrophosphorylase (UGPase) may be essential for starch accumulation in the dry matter of SRs, and IbßFRUCT2, a vacuolar acid invertase, might also be a key regulator of starch content in the SRs. Our results provide valuable resources for future investigations aimed at deciphering the molecular mechanisms determining the starch properties of sweet potato SRs.

9.
Front Plant Sci ; 7: 223, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26973669

RESUMO

Sweet potato (Ipomoea batatas L.) is a nutritious food crop and, based on the high starch content of its storage root, a potential bioethanol feedstock. Enhancing the nutritional value and starch quantity of storage roots are important goals of sweet potato breeding programs aimed at developing improved varieties for direct consumption, processing, and industrial uses. However, developing improved lines of sweet potato is challenging due to the genetic complexity of this plant and the lack of genome information. Short sequence repeat (SSR) markers are powerful molecular tools for tracking important loci in crops and for molecular-based breeding strategies; however, few SSR markers and marker-trait associations have hitherto been identified in sweet potato. In this study, we identified 1824 SSRs by using a de novo assembly of publicly available ESTs and mRNAs in sweet potato, and designed 1476 primer pairs based on SSR-containing sequences. We mapped 214 pairs of primers in a natural population comprised of 239 germplasms, and identified 1278 alleles with an average of 5.972 alleles per locus and a major allele frequency of 0.7702. Population structure analysis revealed two subpopulations in this panel of germplasms, and phenotypic characterization demonstrated that this panel is suitable for association mapping of starch-related traits. We identified 32, 16, and 17 SSR markers associated with starch content, ß-carotene content, and starch composition in the storage root, respectively, using association analysis and further evaluation of a subset of sweet potato genotypes with various characteristics. The SSR markers identified here can be used to select varieties with desired traits and to investigate the genetic mechanism underlying starch and carotenoid formation in the starchy roots of sweet potato.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...