Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Agric Food Chem ; 72(22): 12859-12870, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38780458

RESUMO

Bamboo is one of the most important nontimber forestry products in the world. Light is not only the most critical source of energy for plant photosynthesis but also involved in regulating the biological processes of plants. However, there are few reports on how blue/red light affects Moso bamboo. This study investigated the growth status and physiological responses of Moso bamboo (Phyllostachys edulis) to blue/red light treatments. The growth status of the bamboo plants was evaluated, revealing that both blue- and red-light treatments promoted plant height and overall growth. Gas exchange parameters, chlorophyll fluorescence, and enzyme activity were measured to assess the photosystem response of Moso bamboo to light treatments. Additionally, the blue light treatment led to a higher chlorophyll content and enzyme activities compared to the red light treatment. A tandem mass tag quantitative proteomics approach identified significant changes in protein abundance under different light conditions with specific response proteins associated with distinct pathways, such as photosynthesis and starch metabolism. Overall, this study provides valuable insights into the physiological and proteomic responses of Moso bamboo to blue/red light treatments, highlighting their potential impact on growth and development.


Assuntos
Clorofila , Luz , Fotossíntese , Proteínas de Plantas , Poaceae , Proteômica , Fotossíntese/efeitos da radiação , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Clorofila/metabolismo , Poaceae/metabolismo , Poaceae/efeitos da radiação , Poaceae/química , Poaceae/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Folhas de Planta/efeitos da radiação , Folhas de Planta/química , Folhas de Planta/crescimento & desenvolvimento , Luz Vermelha
2.
Commun Biol ; 7(1): 99, 2024 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-38225453

RESUMO

Proteins in the plasma/serum mirror an individual's physiology. Circulating extracellular vesicles (EVs) proteins constitute a large portion of the plasma/serum proteome. Thus, deep and unbiased proteomic analysis of circulating plasma/serum extracellular vesicles holds promise for discovering disease biomarkers as well as revealing disease mechanisms. We established a workflow for simple, deep, and reproducible proteome analysis of both serum large and small EVs enriched fractions by ultracentrifugation plus 4D-data-independent acquisition mass spectrometry (4D-DIA-MS). In our cohort study of obstetric antiphospholipid syndrome (OAPS), 4270 and 3328 proteins were identified from large and small EVs enriched fractions respectively. Both of them revealed known or new pathways related to OAPS. Increased levels of von Willebrand factor (VWF) and insulin receptor (INSR) were identified as candidate biomarkers, which shed light on hypercoagulability and abnormal insulin signaling in disease progression. Our workflow will significantly promote our understanding of plasma/serum-based disease mechanisms and generate new biomarkers.


Assuntos
Síndrome Antifosfolipídica , Vesículas Extracelulares , Gravidez , Feminino , Humanos , Proteoma/metabolismo , Proteômica/métodos , Síndrome Antifosfolipídica/metabolismo , Estudos de Coortes , Biomarcadores , Vesículas Extracelulares/metabolismo
3.
J Cell Biol ; 222(8)2023 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-37389864

RESUMO

Autophagy is a conserved and tightly regulated intracellular quality control pathway. ULK is a key kinase in autophagy initiation, but whether ULK kinase activity also participates in the late stages of autophagy remains unknown. Here, we found that the autophagosomal SNARE protein, STX17, is phosphorylated by ULK at residue S289, beyond which it localizes specifically to autophagosomes. Inhibition of STX17 phosphorylation prevents such autophagosome localization. FLNA was then identified as a linker between ATG8 family proteins (ATG8s) and STX17 with essential involvement in STX17 recruitment to autophagosomes. Phosphorylation of STX17 S289 promotes its interaction with FLNA, activating its recruitment to autophagosomes and facilitating autophagosome-lysosome fusion. Disease-causative mutations around the ATG8s- and STX17-binding regions of FLNA disrupt its interactions with ATG8s and STX17, inhibiting STX17 recruitment and autophagosome-lysosome fusion. Cumulatively, our study reveals an unexpected role of ULK in autophagosome maturation, uncovers its regulatory mechanism in STX17 recruitment, and highlights a potential association between autophagy and FLNA.


Assuntos
Autofagossomos , Filaminas , Macroautofagia , Proteínas Qa-SNARE , Autofagia , Família da Proteína 8 Relacionada à Autofagia , Fosforilação , Humanos , Proteínas Qa-SNARE/metabolismo , Filaminas/metabolismo
4.
J Fungi (Basel) ; 8(3)2022 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-35330244

RESUMO

Tremella fuciformis is a dimorphic fungus that can undertake a reversible transition between yeast-like conidia and hyphal forms. The transformation mechanism and proteomic differences between these two forms have not been reported. Therefore, in this study, we attempted to explore the differential protein profiles of dikaryotic yeast-like conidia from fruiting bodies and mycelia (FBMds) and dikaryotic mycelia (DM) by synthetically applying high-resolution MS1-based quantitative data-independent acquisition (HRMS1-DIA) full proteomics and parallel reaction monitoring (PRM) targeted proteomics. The results showed that a total of 5687 proteins were quantified, and 2220 of them (39.01%) showed more than a two-fold change in expression. The functional analysis of the differentially expressed proteins (DEPs) confirmed that the DEPs were mainly located in the membrane and nucleus. The FBMds tended to express proteins involved in biosynthesis, metabolism, DNA replication and transcription, and DNA damage repair. At the same time, DM exhibited an increased expression of proteins involved in signal transduction mechanisms such as the mitogen-activated protein kinase (MAPK) signaling pathway and the Ras signaling pathway. Further, phosphorylation analysis confirmed the importance of the MAPK signaling pathway in T. fuciformis dimorphism, and comparative metabolism analysis demonstrated the metabolic difference between FBMds and DM. The information obtained in the present study will provide new insights into the difference between FBMds and DM and lay a foundation for further research on the dimorphism formation mechanism of T. fuciformis.

5.
Int J Mol Sci ; 22(19)2021 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-34638657

RESUMO

Phytohormone ABA regulates the expression of numerous genes to significantly affect seed dormancy, seed germination and early seedling responses to biotic and abiotic stresses. However, the function of many ABA-responsive genes remains largely unknown. In order to improve the ABA-related signaling network, we conducted a large-scale ABA phenotype screening. LSH, an important transcription factor family, extensively participates in seedling development and floral organogenesis in plants, but whether its family genes are involved in the ABA signaling pathway has not been reported. Here we describe a new function of the transcription factor LSH8 in an ABA signaling pathway. In this study, we found that LSH8 was localized in the nucleus, and the expression level of LSH8 was significantly induced by exogenous ABA at the transcription level and protein level. Meanwhile, seed germination and root length measurements revealed that lsh8 mutant lines were ABA insensitive, whereas LSH8 overexpression lines showed an ABA-hypersensitive phenotype. With further TMT labeling quantitative proteomic analysis, we found that under ABA treatment, ABA-responsive proteins (ARPs) in the lsh8 mutant presented different changing patterns with those in wild-type Col4. Additionally, the number of ARPs contained in the lsh8 mutant was 397, six times the number in wild-type Col4. In addition, qPCR analysis found that under ABA treatment, LSH8 positively mediated the expression of downstream ABA-related genes of ABI3, ABI5, RD29B and RAB18. These results indicate that in Arabidopsis, LSH8 is a novel ABA regulator that could specifically change the expression pattern of APRs to positively mediate ABA responses.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Transdução de Sinais/fisiologia , Fatores de Transcrição/metabolismo , Regulação da Expressão Gênica de Plantas/fisiologia , Germinação/fisiologia , Fenótipo , Proteômica/métodos , Sementes/metabolismo
6.
Int J Mol Sci ; 22(16)2021 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-34445714

RESUMO

Phytochromobilin (PΦB) participates in the regulation of plant growth and development as an important synthetase of photoreceptor phytochromes (phy). In addition, Arabidopsis long hypocotyl 2 (HY2) appropriately works as a key PΦB synthetase. However, whether HY2 takes part in the plant stress response signal network remains unknown. Here, we described the function of HY2 in NaCl signaling. The hy2 mutant was NaCl-insensitive, whereas HY2-overexpressing lines showed NaCl-hypersensitive phenotypes during seed germination. The exogenous NaCl induced the transcription and the protein level of HY2, which positively mediated the expression of downstream stress-related genes of RD29A, RD29B, and DREB2A. Further quantitative proteomics showed the patterns of 7391 proteins under salt stress. HY2 was then found to specifically mediate 215 differentially regulated proteins (DRPs), which, according to GO enrichment analysis, were mainly involved in ion homeostasis, flavonoid biosynthetic and metabolic pathways, hormone response (SA, JA, ABA, ethylene), the reactive oxygen species (ROS) metabolic pathway, photosynthesis, and detoxification pathways to respond to salt stress. More importantly, ANNAT1-ANNAT2-ANNAT3-ANNAT4 and GSTU19-GSTF10-RPL5A-RPL5B-AT2G32060, two protein interaction networks specifically regulated by HY2, jointly participated in the salt stress response. These results direct the pathway of HY2 participating in salt stress, and provide new insights for the plant to resist salt stress.


Assuntos
Arabidopsis/genética , Arabidopsis/metabolismo , Oxirredutases/genética , Oxirredutases/metabolismo , Secas , Germinação/fisiologia , Oxirredutases/fisiologia , Fitocromo/metabolismo , Desenvolvimento Vegetal/efeitos dos fármacos , Plantas Geneticamente Modificadas , Estresse Salino/efeitos dos fármacos , Estresse Salino/genética , Estresse Salino/fisiologia , Sementes/metabolismo , Transdução de Sinais/fisiologia , Cloreto de Sódio/metabolismo , Estresse Fisiológico/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...