Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Eur J Med Chem ; 151: 849-860, 2018 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-29684895

RESUMO

Xanthine oxidase, which catalyzes the oxidative reaction of hypoxanthine and xanthine into uric acid, is a key enzyme to the pathogenesis of hyperuricemia and gout. In this study, for the purpose of discovering novel xanthine oxidase (XO) inhibitors, a series of 2-arylbenzo[b]furan derivatives (3a-3d, 4a-4o and 6a-6d) were designed and synthesized. All these compounds were evaluated their xanthine oxidase inhibitory and antioxidant activities by using in vitro enzymatic assay and cellular model. The results showed that a majority of the designed compounds exhibited potent xanthine oxidase inhibitory effects and antioxidant activities, and compound 4a emerged as the most potent xanthine oxidase inhibitor (IC50 = 4.45 µM). Steady-state kinetic measurements of the inhibitor 4a with the bovine milk xanthine oxidase indicated a mixed type inhibition with 3.52 µM Ki and 13.14 µM Kis, respectively. The structure-activity relationship analyses have also been presented. Compound 4a exhibited the potent hypouricemic effect in the potassium oxonate-induced hyperuricemic mice model. A molecular docking study of compound 4a was performed to gain an insight into its binding mode with xanthine oxidase. These results highlight the identification of a new class of xanthine oxidase inhibitors that have potential to be more efficacious in treatment of gout.


Assuntos
Benzofuranos/química , Benzofuranos/farmacologia , Desenho de Fármacos , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Xantina Oxidase/antagonistas & inibidores , Animais , Antioxidantes/química , Antioxidantes/farmacologia , Bovinos , Furanos , Masculino , Camundongos , Camundongos Endogâmicos ICR , Simulação de Acoplamento Molecular , Células RAW 264.7 , Relação Estrutura-Atividade , Xantina Oxidase/metabolismo
2.
J Chromatogr B Analyt Technol Biomed Life Sci ; 1068-1069: 253-260, 2017 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-29132906

RESUMO

Natural products have been recognized to play an invaluable role in drug discovery. However, efficient discovery of minor active constituents from natural sources is challenging due to the low abundance and complex matrices. In this study, we developed a selective knockout method to discover minor bioactive components from complex phytochemical mixtures, using a Chinese medicine as an example. Based on the chromatographic fingerprint, six major components in the ethyl acetate extract of the root of Salvia miltiorrhiza (EASM) were selectively knocked out via high-resolution peak fraction (HRPF) approach. The remaining extract was automatically enriched and fractionated to generate a chemical library consisting of 62 minor components with contents less than 3‰. Simultaneously, a parallel mass-spectrometry (MS) analysis was performed to ensure purity and to characterize the structure of the compound in each fraction. Via an antioxidant response element (ARE)-driven luciferase reporter system, 33 minor components were screened out as nuclear factor erythroid 2-related factor 2 (Nrf2) activators and 30 components were identified. Here, the Nrf2 activation activities of 21 components have been reported for the first time. Different from the existing methods for discovery of active compounds from natural products, in the developed method of this manuscript, the major components are selectively removed, and the fractions of the minor components are prepared after several times of preparative HPLC enrichment by high-resolution peak fraction approach. It improves the prospective discovery of minor active components from complex medicinal herbs.


Assuntos
Descoberta de Drogas/métodos , Extratos Vegetais , Salvia miltiorrhiza/química , Benzofuranos/análise , Benzofuranos/metabolismo , Linhagem Celular , Cromatografia Líquida de Alta Pressão/métodos , Cinamatos/análise , Cinamatos/metabolismo , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Humanos , Espectrometria de Massas , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Extratos Vegetais/análise , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Raízes de Plantas/química
3.
Eur J Med Chem ; 124: 637-648, 2016 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-27614410

RESUMO

Xanthine oxidase (XO) is the key enzyme in humans which is related to a variety of diseases such as gout, hyperuricemia and cardiovascular diseases. In this work, a series of 2-arylbenzo[b]furan derivatives were synthesized based on salvianolic acid C, and they were evaluated for xanthine oxidase inhibitory and antioxidant activities. Compounds 5b, 6a, 6e and 6f showed potent xanthine oxidase inhibitory activities with IC50 values ranging from 3.99 to 6.36 µM, which were comparable with that of allopurinol. Lineweaver-Burk plots analysis revealed that the representative derivative 6e could bind to either xanthine oxidase or the xanthine oxidase-xanthine complex, which exhibited a mixed-type competitive mechanism. A DPPH radical scavenging assay showed most of the hydroxyl-functionalized 2-arylbenzo[b]furan derivatives possessed the potent antioxidant activity, which was further validated on LPS-stimulated RAW 264.7 macrophages model. The structure-activity relationships were preliminary analyzed and indicated that the structural skeleton of 2-arylbenzo[b]furan and phenolic hydroxyl groups played an important role in maintaining xanthine oxidase inhibitory effect and antioxidant property for the series of derivatives. Meanwhile, molecular docking studies were performed to further confirm the structure-activity relationships and investigate the proposed binding mechanisms of compounds 5d, 6d and 10d binding to the protein.


Assuntos
Alcenos/química , Furanos/síntese química , Furanos/farmacologia , Polifenóis/química , Xantina Oxidase/antagonistas & inibidores , Animais , Antioxidantes/síntese química , Antioxidantes/química , Antioxidantes/farmacologia , Sítios de Ligação , Ativação Enzimática/efeitos dos fármacos , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Furanos/química , Humanos , Concentração Inibidora 50 , Macrófagos/efeitos dos fármacos , Macrófagos/enzimologia , Camundongos , Simulação de Acoplamento Molecular , Estrutura Molecular , Células RAW 264.7 , Relação Estrutura-Atividade
4.
Sci Rep ; 6: 29155, 2016 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-27377465

RESUMO

Cardiotonic steroids (CTS) are clinically important drugs for the treatment of heart failure owing to their potent inhibition of cardiac Na(+), K(+)-ATPase (NKA). Bufadienolides constitute one of the two major classes of CTS, but little is known about how they interact with NKA. We report a remarkable stereoselectivity of NKA inhibition by native 3ß-hydroxy bufalin over the 3α-isomer, yet replacing the 3ß-hydroxy group with larger polar groups in the same configuration enhances inhibitory potency. Binding of the two (13)C-labelled glycosyl diastereomers to NKA were studied by solid-state NMR (SSNMR), which revealed interactions of the glucose group of the 3ß- derivative with the inhibitory site, but much weaker interactions of the 3α- derivative with the enzyme. Molecular docking simulations suggest that the polar 3ß-groups are closer to the hydrophilic amino acid residues in the entrance of the ligand-binding pocket than those with α-configuration. These first insights into the stereoselective inhibition of NKA by bufadienolides highlight the important role of the hydrophilic moieties at C3 for binding, and may explain why only 3ß-hydroxylated bufadienolides are present as a toxic chemical defence in toad venom.


Assuntos
Bufanolídeos/química , Bufanolídeos/farmacologia , Glicosídeos Cardíacos/farmacologia , ATPase Trocadora de Sódio-Potássio/antagonistas & inibidores , Animais , Bufanolídeos/síntese química , Bufonidae , Isótopos de Carbono , Espectroscopia de Ressonância Magnética Nuclear de Carbono-13 , Glicosídeos Cardíacos/química , Cromatografia Líquida de Alta Pressão , Cristalografia por Raios X , Simulação de Acoplamento Molecular , ATPase Trocadora de Sódio-Potássio/metabolismo , Estereoisomerismo , Temperatura
5.
Acta Crystallogr Sect E Struct Rep Online ; 70(Pt 6): o651-2, 2014 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-24940236

RESUMO

The title compound, C24H33NO4·H2O, the reaction product of de-acetyl-cinobufagin with ammonium acetate, consists of three cyclo-hexane rings (A, B and C), one five-membered ring (D), one six-membered lactone ring (E) and an epoxide ring (F). The stereochemistry of the ring junctures are A/B cis, B/C trans, C/D cis and D/F cis. Cyclo-hexane rings A, B and C have normal chair conformations. The five-membered ring D adopts an envelope conformation (with the C atom bearing the lactone ring as the flap) and the lactone ring E is planar. In the crystal, hy-droxy and water O-H⋯O and amine N-H⋯O hydrogen bonds involving carbonyl, hy-droxy and water O-atom acceptors link the mol-ecules into a three-dimensional network.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...