Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Dalton Trans ; 51(48): 18722-18733, 2022 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-36449270

RESUMO

Rationally designing ternary transition-metal phosphides (TMPs) for the hydrogen evolution reaction (HER) is desirable but remains a significant challenge. Herein, ternary FeCoNiP encapsulated in a porous carbon shell, coupled with N-doped carbon nanotubes (FeCoNiP@NCNTs) are synthesized via a simple pyrolysis-phosphatization strategy derived from FeCoNi-MOF-100@dicyandiamide. Because Co/Ni enters the FeP lattice, FeCoNiP@NCNTs show a favorable catalytic performance towards the HER with low overpotential values of 86.7 and 233.5 mV at 10 mA cm-2 in acidic and alkaline media, respectively, surpassing the HER performance of FeP@NCNTs, FeCoP@NCNTs, and FeNiP@NCNTs. Impressively, FeCoNiP@NCNTs display adequate acid-resistance capacity during the HER process, with nearly negligible decay due to the thin graphitized carbon shell structure with a thickness of 11.5-20.3 nm. The results of experiments, structural characterization, and density functional theory (DFT) calculations demonstrate that Co/Ni co-doping can modulate the adsorption and dissociation processes of H+ and downshift the d-band center of FeP. This work proposes a strategy for fabricating ternary TMP catalysts with heterogeneous structures for the HER.

2.
Bioelectrochemistry ; 145: 108094, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35299151

RESUMO

A pomegranate-inspired bifunctional electrode material based on Ni/NiO nanoparticle embedded in nitrogen-doped, partially graphitized carbon framework (Ni/NiO@NPGC) was designed and prepared for the construction of novel electrochemical biosensor and methanol oxidation reaction (MOR). Profiting from itsspecialstructureandfunction, Ni/NiO@NPGC was employed as a matrix immobilizing acetylcholinesterase (AChE) for methyl parathion (MP) sensor. The developed biosensor was proved to have wide linear range (1.0 × 10-14-1.0 × 10-8 g mL-1), low detection limit (3.5 × 10-15 g mL-1), and good stability for the determination of MP in practical samples. In addition, the Ni/NiO@NPGC electrode exhibited high electrocatalytic activity (specific activity 73.1 mA cm-2) and durability for the MOR in alkaline medium. The results were mainly attributed to the pomegranate-like architecture structure with pyridinic N and carbon frame of Ni/NiO@NPGC, which ensured the electrochemical activities of all nanoparticles and immobilization of enzyme. In addition, the metal oxide was well dispersed to prevent from self-agglomeration and kept mass transfer paths. The work provides a reference for the development of high-performance bifunctional electrode material for the biosensor and MOR.


Assuntos
Acetilcolinesterase , Técnicas Biossensoriais , Acetilcolinesterase/química , Técnicas Biossensoriais/métodos , Carbono/química , Eletrodos , Metanol , Níquel/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...