Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Opt Express ; 29(20): 32691-32699, 2021 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-34615334

RESUMO

We demonstrate single-shot nondiffracting light-sheet microscopy by the incoherent superposition of dispersed polychromatic light sources. We characterized our technique by generating a Bessel light-sheet with a supercontinuum light-source and a C-light-sheet using a diode laser, and demonstrated its applicability to fluorescence microscopy. We emphasize that our method is easily implementable and compatible with the requirements of high-resolution microscopy.

2.
Opt Lett ; 45(23): 6470-6473, 2020 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-33258839

RESUMO

We demonstrate a method of generating instantaneous and uniform total internal reflection fluorescence (TIRF) excitation by using an annular fiber bundle and spatially incoherent light sources. We show the flexibility of our method in that it can generate TIRF excitation with either a laser light source or an LED of different wavelengths, and facilitate switching between TIRF and epi illumination. In this report we detail the design of the fiber bundle, then demonstrate the performance via single-molecule imaging in the presence of high background and high throughput, and uniform TIRF imaging of cells over a large field of view. Our versatile method will enable quantitative shadowless TIRF imaging.

3.
J Phys D Appl Phys ; 54(10)2020 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-34483365

RESUMO

Line-scanning confocal microscopy provides high imaging speed and moderate optical sectioning strength, which makes it a useful tool for imaging various biospecimens ranging from living cells to fixed tissues. Conventional line-scanning systems have only used a single excitation line and slit, and thus have not fully exploited benefits of parallelization. Here we investigate the optical performance of multi-line scanning confocal microscopy (mLS) by employing a digital micro-mirror that provides programmable patterns of the illumination beam and the detection slit. Through experimental results and optical simulations, we assess the depth discrimination of mLS under different optical parameters and compare it with multi-point systems such as scanning disk confocal microscopy (SDCM). Under the same illumination duty cycle, we find that mLS has better optical sectioning than SDCM at a high degree of parallelization. The optimized mLS provides a low photobleaching rate and video-rate imaging while its optical sectioning is similar to single line-scanning confocal microscopy.

4.
Opt Commun ; 4742020 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-34483370

RESUMO

We demonstrate single-shot non-diffracting light-sheet generation by controlling the spatial coherence of light. A one-dimensional coherent beam, created by either increasing the spatial coherence of an LED or decreasing the spatial coherence of a laser, makes it unnecessary to scan non-diffracting beams to generate light-sheets. We theoretically and experimentally demonstrate the equivalence between our method and a scanned light-sheet, and investigate the characteristics of the light-sheet in detail. Our method is easily implementable and universally applicable for high-resolution multicolor light-sheet fluorescence imaging.

5.
J Biophotonics ; 12(10): e201900075, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31111688

RESUMO

Confocal microscopy is an indispensable tool for biological imaging due to its high resolution and optical sectioning capability. However, its slow imaging speed and severe photobleaching have largely prevented further applications. Here, we present dual inclined beam line-scanning (LS) confocal microscopy. The reduced excitation intensity of our imaging method enabled a 2-fold longer observation time of fluorescence compared to traditional LS microscopy while maintaining a good sectioning capability and single-molecule sensitivity. We characterized the performance of our method and applied it to subcellular imaging and three-dimensional single-molecule RNA imaging in mammalian cells.


Assuntos
Microscopia Confocal , Fotodegradação , Linhagem Celular , Sobrevivência Celular
6.
J Vis Exp ; (146)2019 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-31009011

RESUMO

Single-molecule imaging has greatly advanced our understanding of molecular mechanisms in biological studies. However, it has been challenging to obtain large field-of-view, high-contrast images in thick cells and tissues. Here, we introduce highly inclined swept tile (HIST) microscopy that overcomes this problem. A pair of cylindrical lenses was implemented to generate an elongated excitation beam that was scanned over a large imaging area via a fast galvo mirror. A 4f configuration was used to position optical components. A scientific complementary metal-oxide semiconductor camera detected the fluorescence signal and blocked the out-of-focus background with a dynamic confocal slit synchronized with the beam sweeping. We present a step-by-step instruction on building the HIST microscope with all basic components.


Assuntos
Microscopia/instrumentação , Imagem Individual de Molécula/instrumentação , Lentes , Óxidos , Semicondutores
7.
Nanophotonics ; 8(12): 2111-2128, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34476172

RESUMO

Fluorescence microscopy has long been a valuable tool for biological and medical imaging. Control of optical parameters such as the amplitude, phase, polarization and propagation angle of light gives fluorescence imaging great capabilities ranging from super-resolution imaging to long-term real-time observation of living organisms. In this review, we discuss current fluorescence imaging techniques in terms of the use of tailored or structured light for the sample illumination and fluorescence detection, providing a clear overview of their working principles and capabilities.

8.
Opt Express ; 26(12): 15276-15288, 2018 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-30114777

RESUMO

The uneven illumination of a Gaussian profile makes quantitative analysis highly challenging in laser-based wide-field fluorescence microscopy. Here we present flat-field illumination (FFI) where the Gaussian beam is reshaped into a uniform flat-top profile using a high-precision refractive optical component. The long working distance and high spatial coherence of FFI allows us to accomplish uniform epi and TIRF illumination for multi-color single-molecule imaging. In addition, high-throughput borderless imaging is demonstrated with minimal image overlap.

9.
Anal Chem ; 89(24): 13044-13048, 2017 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-29172450

RESUMO

Alpha-synuclein (α-SYN) is a central molecule in Parkinson's disease pathogenesis. Despite several studies, the molecular nature of endogenous α-SYN especially in human brain samples is still not well understood due to the lack of reliable methods and the limited amount of biospecimens. Here, we introduce α-SYN single-molecule pull-down (α-SYN SiMPull) assay combined with in vivo protein crosslinking to count individual α-SYN protein and assess its native oligomerization states from biological samples including human postmortem brains. This powerful single-molecule assay can be highly useful in diagnostic applications using various specimens for neurodegenerative diseases including Alzheimer's disease and Parkinson's disease.


Assuntos
Encéfalo/metabolismo , Doenças Neurodegenerativas/metabolismo , alfa-Sinucleína/análise , Células Cultivadas , Células HEK293 , Humanos , Doenças Neurodegenerativas/diagnóstico , alfa-Sinucleína/metabolismo
10.
Sci Rep ; 7(1): 10945, 2017 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-28887471

RESUMO

We report a simple single-molecule fluorescence imaging method that increases the temporal resolution of any type of array detector by >5-fold with full field-of-view. We spread single-molecule spots to adjacent pixels by rotating a mirror in the detection path during the exposure time of a single frame, which encodes temporal information into the spatial domain. Our approach allowed us to monitor fast blinking of an organic dye, the dissociation kinetics of very short DNA and conformational changes of biomolecules with much improved temporal resolution than the conventional method. Our technique is useful when a large field-of-view is required, for example, in the case of weakly interacting biomolecules or cellular imaging.

11.
Opt Express ; 22(12): 14792-802, 2014 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-24977574

RESUMO

We report on fabrication of a microtoroid resonator of a high-quality factor (i.e., Q-factor of ~3.24 × 10(6) measured under the critical coupling condition) integrated in a microfluidic channel using femtosecond laser three-dimensional (3D) micromachining. Coupling of light into and out of the microresonator has been realized with a fiber taper that is reliably assembled with the microtoroid. The assembly of the fiber to the microtoroid is achieved by welding the fiber taper onto the sidewall of the microtoroid using CO2 laser irradiation. The integrated microresonator maintains a high Q-factor of 3.21 × 10(5) as measured in air, which should still be sufficient for many sensing applications. We test the functionality of the integrated optofluidic sensor by performing bulk refractive index sensing of purified water doped with tiny amount of salt. It is shown that a detection limit of ~1.2 × 10(-4) refractive index unit can be achieved. Our result showcases the capability of integration of high-Q microresonators with complex microfluidic systems using femtosecond laser 3D micromachining.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...