Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Spectrochim Acta A Mol Biomol Spectrosc ; 302: 123101, 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-37423099

RESUMO

Surface-enhanced Raman scattering (SERS) is a promising analytical technique for the rapid, sensitive, and repeatable detection in various SERS application fields. Herein, a new type of potential magnetically recyclable SERS substrate was designed and rapidly synthesized via a facile three-step template method. First, the magnetic ferroferric oxide (Fe3O4) cores were prepared by a convenient solvothermal approach, and coated with a thin layer of silica by a sol-gel process in order to improve their stability in complicated environments. Next, the negatively charged polydopamine (PDA)/K6[SiW11VIVO40]·7H2O (PDA/SiW11V) outer shell was assembled upon the magnetic Fe3O4@SiO2 core-shell nanoparticles via a layer-by-layer sequential adsorption process using the stickiness of PDA. The SiW11V multilayer shell can be used as the subsequent photocatalytic reduction precursors for the in-situ loading of high-density gold nanoparticles (AuNPs), without any other organic additives. The AuNPs decorated multilayer core-shell Fe3O4@SiO2@PDA magnetic nanostructures were employed as a potential magnetically recyclable SERS substrate, and showed excellent SERS performance. Using crystal violet (CV) as a model target, the as-fabricated AuNPs modified multilayer core-shell Fe3O4@SiO2@PDA magnetic nanostructures SERS substrates exhibited significant enhancement, and pushed the detection limit down to 10-12 M. Aside from the ultrahigh sensitivity, these SERS substrates also possess an excellent reproducibility (relative standard deviation (RSD) âˆ¼ 8.3%), long-term stability (75 days), and unique chemical stability capability in different organic solvents and different environments with pH ≤ 10. Furthermore, a real-life application is also performed by the detection of melamine in spiked milk solution using the as-prepared magnetic nanostructures SERS-active substrates (limit of detection (LOD), 10-8 M). These results highlight that the rational design and controllable synthesis of multifunctional magnetic SERS substrates is a promising strategy in many different application fields such as biosensing, photoelectrocatalysis, and medical diagnosis.

2.
Heliyon ; 9(3): e13855, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36895342

RESUMO

Fe-Al-Cr coatings with different content of Cr additive were prepared on 1045 carbon steel substrates by a laser cladding process. The incorporation of Cr atoms can effectively enhance the corrosion resistance of the coatings. In particular, the Fe-28Al-5Cr laser cladding coating exhibits the best film quality without phase segregation. In addition, the interfacial adhesion between the Fe-28Al-5Cr coating and the 1045 carbon steel substrate is improved. As a result, the Fe-28Al-5Cr laser cladding coating exhibits the best corrosion resistance in a 3.5 wt% NaCl solution under both immersion and electrochemical conditions. However, excessive Cr additive lead to the formation of Al8Cr5 in the grain boundaries, resulting in inferior corrosion resistance. Therefore, the new findings demonstrated in this work may inspire the design of high-quality coatings with excellent corrosion resistance.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...