Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Future Med Chem ; : 1-17, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38949857

RESUMO

PD-L1 is overexpressed on the surface of tumor cells and binds to PD-1, resulting in tumor immune escape. Therapeutic strategies to target the PD-1/PD-L1 pathway involve blocking the binding. Immune checkpoint inhibitors have limited efficacy against tumors because PD-L1 is also present in the cytoplasm. PD-L1 of post-translational modifications (PTMs) have uncovered numerous mechanisms contributing to carcinogenesis and have identified potential therapeutic targets. Therefore, small molecule inhibitors can block crucial carcinogenic signaling pathways, making them a potential therapeutic option. To better develop small molecule inhibitors, we have summarized the PTMs of PD-L1. This review discusses the regulatory mechanisms of small molecule inhibitors in carcinogenesis and explore their potential applications, proposing a novel approach for tumor immunotherapy based on PD-L1 PTM.


[Box: see text].

2.
mBio ; 15(4): e0306823, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38440978

RESUMO

The chronic carrier state of the hepatitis B virus (HBV) often leads to the development of liver inflammation as carriers age. However, the exact mechanisms that trigger this hepatic inflammation remain poorly defined. We analyzed the sequential processes during the onset of liver inflammation based on time-course transcriptome and transcriptional regulatory networks in an HBV transgenic (HBV-Tg) mice model and chronic HBV-infected (CHB) patients (data from GSE83148). The key transcriptional factor (TF) responsible for hepatic inflammation occurrence was identified and then validated both in HBV-Tg mice and liver specimens from young CHB patients. By time-course analysis, an early stage of hepatic inflammation was demonstrated in 3-month-old HBV-Tg mice: a marked upregulation of genes related to inflammation (Saa1/2, S100a8/9/11, or Il1ß), innate immunity (Tlr2, Tlr7, or Tlr8), and cells chemotaxis (Ccr2, Cxcl1, Cxcl13, or Cxcl14). Within CHB samples, a unique early stage of inflammation activation was discriminated from immune tolerance and immune activation groups based on distinct gene expression patterns. Enhanced activation of TF Stat3 was strongly associated with increased inflammatory gene expression in this early stage of inflammation. Expression of phosphorylated Stat3 was higher in liver specimens from young CHB patients with relatively higher alanine aminotransferase levels. Specific inhibition of Stat3 activation significantly attenuated the degree of liver inflammation, the expression of inflammation-related genes, and the inflammatory monocytes and macrophages in 3-month-old HBV-Tg mice. Stat3 activation is essential for hepatic inflammation occurrence and is a novel indicator of early-stage immune activation in chronic HBV carriers. IMPORTANCE: Until now, it remains a mystery that chronic hepatitis B virus (HBV)-infected patients in the "immune tolerance phase" will transition to the "immune activation phase" as they age. In this study, we reveal that Stat3 activation-triggered hepatic transcriptional alterations are distinctive characteristics of the early stage of immune/inflammation activation in chronic HBV infection. For the first time, we discover a mechanism that might trigger the transition from immune tolerance to immune activation in chronic HBV carriers.


Assuntos
Vírus da Hepatite B , Hepatite B Crônica , Animais , Humanos , Camundongos , Redes Reguladoras de Genes , Vírus da Hepatite B/genética , Inflamação
3.
Nano Lett ; 24(9): 2931-2938, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38377049

RESUMO

Plasmon-induced hot-electron transfer at the metallic nanoparticle/semiconductor interface is the basis of plasmon-enhanced photocatalysis and energy harvesting. However, limited by the nanoscale size of hot spots and femtosecond time scale of hot-electron transfer, direct observation is still challenging. Herein, by using spatiotemporal-resolved photoemission electron microscopy with a two-color pump-probe beamline, we directly observed such a process with a concise system, the Au nanoparticle/monolayer transition-metal dichalcogenide (TMD) interface. The ultrafast hot-electron transfer from Au nanoparticles to monolayer TMDs and the plasmon-enhanced transfer process were directly measured and verified through an in situ comparison with the Au film/TMD interface and free TMDs. The lifetime at the Au nanoparticle/MoSe2 interface decreased from 410 to 42 fs, while the photoemission intensities exhibited a 27-fold increase compared to free MoSe2. We also measured the evolution of hot electrons in the energy distributions, indicating the hot-electron injection and decay happened in an ultrafast time scale of ∼50 fs without observable electron cooling.

4.
Nat Commun ; 14(1): 4837, 2023 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-37563183

RESUMO

Low-loss dielectric modes are important features and functional bases of fundamental optical components in on-chip optical devices. However, dielectric near-field modes are challenging to reveal with high spatiotemporal resolution and fast direct imaging. Herein, we present a method to address this issue by applying time-resolved photoemission electron microscopy to a low-dimensional wide-bandgap semiconductor, hexagonal boron nitride (hBN). Taking a low-loss dielectric planar waveguide as a fundamental structure, static vector near-field vortices with different topological charges and the spatiotemporal evolution of waveguide modes are directly revealed. With the lowest-order vortex structure, strong nanofocusing in real space is realized, while near-vertical photoemission in momentum space and narrow spread in energy space are simultaneously observed due to the atomically flat surface of hBN and the small photoemission horizon set by the limited photon energies. Our approach provides a strategy for the realization of flat photoemission emitters.

5.
Nanotechnology ; 34(24)2023 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-36893457

RESUMO

Efficient manipulation of the emission direction of a chiral nanoscale light source is significant for information transmission and on-chip information processing. Here, we propose a scheme to control the directionality of nanoscale chiral light sources based on gap plasmons. The gap plasmon mode formed by a gold nanorod and a silver nanowire realizes the highly directional emission of chiral light sources. Based on the optical spin-locked light propagation, the hybrid structure enables the directional coupling of chiral emission to achieve a contrast ratio of 99.5%. The emission direction can be manipulated by tailoring the configuration of the structure, such as the positions, aspect ratios, and orientation of the nanorod. Besides, a great local field enhancement exists for highly enhanced emission rates within the nanogap. This chiral nanoscale light source manipulation scheme provides a way for chiral valleytronics and integrated photonics.

6.
Nanoscale ; 13(4): 2626-2631, 2021 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-33496300

RESUMO

The ultrafast spatiotemporal imaging of photoexcited electrons is essential to understanding interfacial electron dynamic processes. We used time- and energy-resolved photoemission electron microscopy (PEEM) to investigate the photoexcited electron dynamics at multiplex in-plane silicon pn junctions. We found that the measured kinetic energy of photoelectrons from n-type regions is higher than that from p-type regions owing to different work functions. Interestingly, the kinetic energy of outer n-type regions is higher than that of inner n-type regions, which is caused by the reverse bias induced by photoemission. Time-resolved PEEM results reveal different evolution rates of hot electrons in different doping regions. The rise time of the n-type (outer n-type) regions is faster than that of the p-type (inner n-type) regions. So, closed doping patterns can influence the electron spectra and dynamics at the micro-nano scale. These results help us to understand the ultrafast dynamics of carriers at in-plane interfaces and optimize optoelectronic integrated devices with complex heterojunctions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...