Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
RSC Adv ; 14(17): 11862-11871, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38623293

RESUMO

Since Na3V2(PO4)3 (NVP) possesses modest volume deformation and three-dimensional ion diffusion channels, it is a potential sodium-ion battery cathode material that has been extensively researched. Nonetheless, NVP still endures the consequences of poor electronic conductivity and low voltage platforms, which need to be further improved. On this basis, a high voltage platform Na3V2(PO4)2F3 was introduced to form a composite with NVP to increase the energy density. In this study, the sol-gel technique was successfully used to synthesize a Na3V2(PO4)2.75F0.75/C (NVPF·3NVP/C) composite cathode material. The citric acid-derived carbon layer was utilized to construct three-dimensional conducting networks to effectively promote ion and electron diffusion. Furthermore, the composites' synergistic effect accelerates the quick ionic migration and improves the kinetic reaction. In particular, NVP as the dominant phase enhanced the structural stability and significantly increased the capacitive contribution. Therefore, at 0.1C, the discharge capacity of the modified NVPF·3NVP/C composite is 120.7 mA h g-1, which is greater than the theoretical discharge capacity of pure NVP (118 mA h g-1). It discharged 110.9 mA h g-1 of reversible capacity even at an elevated multiplicity of 10C, and after 200 cycles, it retained 64.1% of its capacity. Thus, the effort produced an optimized NVPF·3NVP/C composite cathode material that may be used in the sodium ion cathode.

2.
ACS Appl Mater Interfaces ; 16(5): 6143-6151, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38270105

RESUMO

V5S8 has received extensive attention in the field of sodium-ion batteries (SIBs) due to its two-dimensional (2D) layered structure, and weak van der Waals forces between V-S accelerate the transport of sodium ions. However, the long-term cycling of V5S8 still suffers from volume expansion and low conductivity. Herein, a hollow nanotube V5S8@C (H-V5S8@C) with improved conductivity was synthesized by a solvothermal method to alleviate cracking caused by volume expansion. Benefiting from the large specific surface area of the hollow nanotube structure and uniform carbon coating, H-V5S8@C exhibits a more active site and enhanced conductivity. Meanwhile, the heterojunction formed by a few residual MoS2 and the outer layer of V5S8 stabilizes the structure and reduces the ion migration barrier with fast Na+ transport. Specifically, the H-V5S8@C anode provides an enhanced rate performance of 270.1 mAh g-1 at 15 A g-1 and high cycling stability of 291.7 mAh g-1 with a retention rate of 90.98% after 300 cycles at 5 A g-1. This work provides a feasible approach for the structural design of 2D layered materials, which can promote the practical application of fast-charging sodium-ion batteries.

3.
ACS Appl Mater Interfaces ; 15(2): 2792-2803, 2023 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-36606677

RESUMO

High-entropy oxide (HEO) is an emerging type of anode material for lithium-ion batteries with excellent properties, where high-concentration oxygen vacancies can effectively enhance the diffusion coefficient of lithium ions. In this study, Ni-free spinel-type HEOs ((FeCoCrMnZn)3O4 and (FeCoCrMnMg)3O4) were prepared via ball milling, and the effects of zinc and magnesium on the concentration of oxygen vacancy (OV), lithium-ion diffusion coefficient (DLi+), and electrochemical performance of HEOs were investigated. Ab initio calculations show that the addition of zinc narrows down the band gap and thus improves the electrical conductivity. X-ray photoelectron spectroscopy (XPS) results show that (FeCoCrMnZn)3O4 (42.7%) and (FeCoCrMnMg)3O4 (42.5%) have high OV concentration. During charge/discharge, the OV concentration of (FeCoCrMnZn)3O4 is higher than that of (FeCoCrMnMg)3O4. The galvanostatic intermittent titration technique (GITT) results show that the DLi+ value of (FeCoCrMnZn)3O4 is higher than that of (FeCoCrMnMg)3O4 during charge and discharge. All of that can improve its specific discharge capacity and enhance its cycle stability. (FeCoCrMnZn)3O4 achieved a discharge capacity of 828.6 mAh g-1 at 2.0 A g-1 after 2000 cycles. This work provides a deep understanding of the structure and performance of HEO.

4.
Small Methods ; 7(2): e2201387, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36604985

RESUMO

Sodium-ion batteries (SIBs) have inspired the potential for widespread use in energy storage owing to the advantages of abundant resources and low cost. Benefiting from the layered structure, 2D-layered materials enable fast interlayer transport of sodium ions and thus are considered promising candidates as anodes for SIBs. Herein, a strategy of adjusting crystal orientation is proposed via a solvothermal method to improve sodium-ion transport at the edge of the interlayers in 2D-layered materials. By introducing surfactants and templates, the 2D-layered V5 S8 nanosheets are controlled to align the interlayer diffusion channels vertically to the surface, which promotes the fast transport of Na+ at the edge of the interlayers as revealed by experimental methods and ab initio calculations. Benefiting from the aligned crystal orientation and rGO coating, the vertical-V5 S8 @rGO hybrid delivers a high initial discharge capacity of 350.6 mAh g-1 at a high current density of 15 A g-1 . This work provides a strategy for the structural design of 2D-layered anode materials by adjusting crystal orientation, which demonstrates the promise for applications in fast-charging alkaline-ion batteries.

5.
Inorg Chem ; 58(12): 8169-8178, 2019 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-31141354

RESUMO

MoSe2 is a prospective anode material for Na-ion batteries because of its layered structure and high theoretical capacity, while the unsatisfied electrochemical performance limits its further development. Herein, we report MoSe2 nanosheets anchored on dual-heteroatoms functionalized graphene by a solvothermal method. The heteroatoms and carbon matrix coexist in the form of graphitic-N/pyridinic-N/pyrrolic-N and P-C/P═O bonds, which result in excellent electronic conductivity of the materials and provide abundant active sites for electrochemical process. Results indicated that organic intercalation increased the layer spacing of the materials to facilitate sodium-ion diffusion, and the in situ formed carbon networks improved the conductivity among the layers of the materials and alleviated volume expansion during the continued charge and discharge process. As an anode of Na-ion batteries, the nanosheets materials exhibited ultrahigh rate performance and deliver capacities of approximately 200 mAh g-1 at the current density of 10 A g-1. The ultrahigh-rate performance can be attributed to its unique nanosheets structure, the dual-heteroatoms functionalized graphene, and the considerable pseudocapacitive quality of the material.

6.
ACS Appl Mater Interfaces ; 11(12): 11518-11526, 2019 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-30817128

RESUMO

Li-rich cathode materials are regarded as ideal cathode materials, owing to their excellent electrochemical capacity. However, residual lithium compounds, which are formed on the surface of the materials by reacting with moisture and carbon dioxide in ambient atmosphere, can impair the surface structure, injure the capacity, and impede the electrode fabrication using Li-rich materials. Exposure to air atmosphere causes the formation of residual lithium compounds; the formation of such compounds is believed to be related to humidity, temperature, and time during handling and storage. In this study, we demonstrated for the first time an artificial strategy for controlling time, temperature, and humidity to accelerate exposure. The formation and effect of residual lithium compounds on Li-rich cathode material Li1.35[Ni0.35Mn0.65]O2 were systematically investigated. The residual lithium compounds formed possessed primarily an amorphous structure and were partially coated on the surface. These compounds include LiOH, Li2O, and Li2CO3. Li2CO3 is the major component in residual lithium compounds. The presence of residual lithium compounds on the material surface led to a high discharge capacity loss and large discharge voltage fading. Understanding the formation and suppressing the effect of residual lithium compounds will help prevent their unfavorable effects and improve the electrochemical performance.

7.
ACS Appl Mater Interfaces ; 10(37): 31324-31329, 2018 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-30148344

RESUMO

A multiple linkage modification (MLM) method was investigated to comprehensively improve the properties of lithium-rich layered oxides. MLM Li1.2Mn0.54Ni0.13Co0.13O2 was successfully synthesized via continuous and appropriate heat treatment. The synthesized Li1.2Mn0.54Ni0.13Co0.13O2 particles were coated with a Li2ZrO3 layer and doped with Zr4+ by using a Zr compound as the MLM reagent. The Li2ZrO3 coating layer could protect materials from the corrosion of hydrogen fluoride, and the structure of the base materials was stabilized due to Zr4+ doping. In addition, the formation of Li2ZrO3 captured inactive residual lithium on the surface and absorbed lithium of host materials, thereby leading to the reduction in the Li/M ratio of materials and promoting the first-cycle Coulombic efficiency. The MLM material delivered the highest initial cycle Coulombic efficiency (∼85%), the best cycle and rate performance among bare and ZrO2-coated particles. These results indicate that MLM is an important technique for improving the performance of electrode materials.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...