Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Nat Prod ; 84(5): 1534-1543, 2021 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-33979163

RESUMO

1-Deoxynojirimycin, an α-glucosidase inhibitor, possesses various biological activities such as antitumor, antidiabetic, and antiviral effects. However, the application of 1-deoxynojirimycin is restricted by its poor lipophilicity and low bioavailability. In this study, three 1-deoxynojirimycin derivatives (8-10) comprising 1-deoxynojirimycin and kaempferol were designed and synthesized to modify their pharmacokinetics and improve their antitumor efficacy. Among them, compound 10, a conjugate of 1-deoxynojirimycin and kaempferol linked through an undecane chain, exhibited excellent lipophilicity, antiproliferative effects, and α-glucosidase inhibitory activity. Compared with 1-deoxynojirimycin, kaempferol, and their combination, compound 10 downregulated cyclooxygenase-2 (COX-2) expression, arrested the cell cycle at the S phase, induced cellular apoptosis, and inhibited the migration of MCF-7 cells. Moreover, further investigation indicated that compound 10 induced MCF-7 cell apoptosis through a mitochondrial-mediated pathway via the loss of mitochondrial membrane potential. This led to increasing intracellular levels of reactive oxygen species (ROS) and Ca2+, the downregulation of Bcl-2 expression, and the upregulation of Bax levels.


Assuntos
1-Desoxinojirimicina/farmacologia , Apoptose/efeitos dos fármacos , Quempferóis/farmacologia , Mitocôndrias/efeitos dos fármacos , Cálcio/metabolismo , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Humanos , Células MCF-7 , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Espécies Reativas de Oxigênio/metabolismo
2.
Food Funct ; 12(9): 4132-4141, 2021 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-33978000

RESUMO

Anthocyanin (cyanidin-3-O-glucose) is a natural water-soluble pigment with a robust antioxidant capacity. However, its poor stability and bioavailability limits its application as a functional food ingredient. This study explored the ability of the silkworm pupa protein-glucose (Spp-Glu) conjugate, developed under wet-heating conditions, to improve the thermal stability and antioxidant activity of cyanidin-3-O-glucose (C3G) at pH 3.0 and 6.8. The characterization experiments suggested that C3G complexed with the Spp-Glu conjugate could modify the protein's microenvironment and cause unfolding of the protein's secondary structures under varied pH conditions. Spectroscopic techniques further revealed the formation of complexes via hydrophobic interactions and static quenching processes when C3G was bound to Spp or Spp-Glu. The formation of these complexes effectively attenuated C3G degradation, thereby enhancing its stability under heat treatment over a range of pH values, and the experiments measuring antioxidant activity suggested that the Spp-Glu conjugate formed does not affect the efficacy of C3G after complexation. Therefore, our study suggests that Spp-Glu has the potential to effectively protect and deliver anthocyanins during industrial application for functional food formulation.


Assuntos
Antocianinas/química , Antocianinas/farmacologia , Antioxidantes/química , Antioxidantes/farmacologia , Bombyx/química , Glucose/química , Proteínas de Insetos/química , Animais , Estabilidade de Medicamentos , Alimento Funcional , Temperatura Alta , Humanos , Concentração de Íons de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Células MCF-7 , Estresse Oxidativo , Estrutura Secundária de Proteína , Pupa/química
3.
RSC Adv ; 11(61): 38703-38711, 2021 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-35493254

RESUMO

Hyperglycemia can be efficaciously regulated by inhibiting α-glucosidase activity and this is regarded as an effective strategy to treat type 2 diabetes. 1-Deoxynojimycin, an α-glucosidase inhibitor, can penetrate cells rapidly to potently inhibit α-glucosidase in a competitive manner. However, the application of 1-deoxynojimycin is limited by its poor lipophilicity and low bioavailability. Herein, three 1-deoxynojimycin derivatives 4-6 were designed and synthesized by linking 1-deoxynojimycin and chrysin to ameliorate the limitations of 1-deoxynojimycin. Among them, compound 6, a conjugate of 1-deoxynojimycin and chrysin linked by an undecane chain, could better bind to the α-glucosidase catalytic site, thereby exhibiting excellent α-glucosidase inhibitory activity (IC50 = 0.51 ± 0.02 µM). Kinetics analyses revealed that compound 6 inhibited the activity of α-glucosidase in a reversible and mixed competitive manner. Fluorescence quenching and UV-Vis spectra showed that compound 6 changed the conformation of the α-glucosidase via complex formation, which triggered a static fluorescence quenching of the enzyme protein.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...