Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Macromol Rapid Commun ; : e2400068, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38593218

RESUMO

With the advantages of lightweight and low thermal conductivity properties, polymeric foams are widely employed as thermal insulation materials for energy-saving buildings but suffer from inherent flammability. Flame-retardant coatings hold great promise for improving the fire safety of these foams without deteriorating the mechanical-physical properties of the foam. In this work, four kinds of sulfur-based flame-retardant copolymers are synthesized via a facile radical copolymerization. The sulfur-containing monomers serve as flame-retardant agents including vinyl sulfonic acid sodium (SPS), ethylene sulfonic acid sodium (VS), and sodium p-styrene sulfonate (VSS). Additionally, 2-hydroxyethyl acrylate (HEA) and 4-hydroxybutyl acrylate are employed to enable a strong interface adhesion with polymeric foams through interfacial H-bonding. By using as-synthesized waterborne flame-retardant polymeric coating with a thickness of 600 µm, the coated polyurethane foam (PUF) can achieve a desired V-0 rating during the vertical burning test with a high limiting oxygen index (LOI) of >31.5 vol%. By comparing these sulfur-containing polymeric fire-retardant coatings, poly(VS-co-HEA) coated PUF demonstrates the best interface adhesion capability and flame-retardant performance, with the lowest peak heat release rate of 166 kW m-2 and the highest LOI of 36.4 vol%. This work provides new avenues for the design and performance optimization of advanced fire-retardant polymeric coatings.

2.
Adv Sci (Weinh) ; 11(17): e2309392, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38403451

RESUMO

MXene-based thermal camouflage materials have gained increasing attention due to their low emissivity, however, the poor anti-oxidation restricts their potential applications under complex environments. Various modification methods and strategies, e.g., the addition of antioxidant molecules and fillers have been developed to overcome this, but the realization of long-term, reliable thermal camouflage using MXene network (coating) with excellent comprehensive performance remains a great challenge. Here, a MXene-based hybrid network comodified with hyaluronic acid (HA) and hyperbranched polysiloxane (HSi) molecules is designed and fabricated. Notably, the presence of appreciated HA molecules restricts the oxidation of MXene sheets without altering infrared stealth performance, superior to other water-soluble polymers; while the HSi molecules can act as efficient cross-linking agents to generate strong interactions between MXene sheets and HA molecules. The optimized MXene/HA/HSi composites exhibit excellent mechanical flexibility (folded into crane structure), good water/solvent resistance, and long-term stable thermal camouflage capability (with low infrared emissivity of ≈0.29). The long-term thermal camouflage reliability (≈8 months) under various outdoor weathers and the scalable coating capability of the MXene-coated textile enable them to disguise the IR signal of various targets in complex environments, indicating the great promise of achieved material for thermal camouflage, IR stealth, and counter surveillance.

3.
Mater Horiz ; 11(5): 1272-1282, 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38165275

RESUMO

Conductive organohydrogels have gained increasing attention in wearable sensors, flexible batteries, and soft robots due to their exceptional environment adaptability and controllable conductivity. However, it is still difficult for conductive organohydrogels to achieve simultaneous improvement in mechanical and electrical properties. Here, we propose a novel "water vapor assisted aramid nanofiber (ANF) reinforcement" strategy to prepare robust and ionically conductive organohydrogels. Water vapor diffusion can induce the pre-gelation of the polymer solution and ensure the uniform dispersion of ANFs in organohydrogels. ANF reinforced organohydrogels have remarkable mechanical properties with a tensile strength, stretchability and toughness of up to 1.88 ± 0.04 MPa, 633 ± 30%, and 6.75 ± 0.38 MJ m-3, respectively. Furthermore, the organohydrogels exhibit great crack propagation resistance with the fracture energy and fatigue threshold as high as 3793 ± 167 J m-2 and ∼328 J m-2, respectively. As strain sensors, the conductive organohydrogel demonstrates a short response time of 112 ms, a large working strain and superior cycling stability (1200 cycles at 40% strain), enabling effective monitoring of a wide range of complex human motions. This study provides a new yet effective design strategy for high performance and multi-functional nanofiller reinforced organohydrogels.

4.
Int J Biol Macromol ; 260(Pt 1): 129403, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38219946

RESUMO

Solar-driven interfacial evaporation (SDIE) is a green and sustainable technique for desalination. Hydrogel composite evaporators have been widely used for SDIE, but it is still challenging for the hydrogel evaporators to achieve uniform distribution of the light absorbing nanomaterials and at the same time possess satisfactory evaporation rate, durability and environmental applicability. We developed a 3D hydrogel evaporator with an asymmetric structure for high-efficiency SDIE. Natural kapok fibers, an important lignocellulosic plant fiber with a hollow structure, are decorated with MXene nanosheets for construction of one-dimensional photothermal conversion network. The top composite hydrogel serves as the light-absorption layer where MXene-modified kapok fibers are evenly dispersed in PVA hydrogel, while the bottom PVA hydrogel with an oriented structure acts as water delivery path. The evaporator exhibits a high solar evaporation rate and efficiency (2.49 kg·m-2·h-1 and 91.5 %, respectively) under one sun irradiation (1 kW·m-2). Even in a high salinity brine, emulsion and corrosive solutions, the evaporator can work normally with a slightly decreased evaporation rate. The 3D hydrogel evaporator with long-term stability and durability shows promising applications in purification of seawater and different waste water.


Assuntos
Hidrogéis , Nanoestruturas , Elementos de Transição , Vapor , Nitritos
5.
Small ; 20(14): e2309272, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37988706

RESUMO

Despite incorporation of organic groups into silica-based aerogels to enhance their mechanical flexibility, the wide temperature reliability of the modified silicone aerogel is inevitably degraded. Therefore, facile synthesis of soft silicone aerogels with wide-temperature stability remains challenging. Herein, novel silicone aerogels containing a high content of Si are reported by using polydimethylvinylsiloxane (PDMVS), a hydrosilylation adduct with water-repellent groups, as a "flexible chain segment" embedded within the aerogel network. The poly(2-dimethoxymethylsilyl)ethylmethylvinylsiloxane (PDEMSEMVS) aerogel is fabricated through a cost-effective ambient temperature/pressure drying process. The optimized aerogel exhibits exceptional performance, such as ultra-low density (50 mg cm-3), wide-temperature mechanical flexibility, and super-hydrophobicity, in comparison to the previous polysiloxane aerogels. A significant reduction in the density of these aerogels is achieved while maintaining a high crosslinking density by synthesizing gel networks with well-defined macromolecules through hydrolytic polycondensation crosslinking of PDEMSEMVS. Notably, the pore/nanoparticle size of aerogels can be fine-tuned by optimizing the gel solvent type. The as-prepared silicone aerogels demonstrate selective absorption, efficient oil-water separation, and excellent thermal insulation properties, showing promising applications in oil/water separation and thermal protection.

6.
J Colloid Interface Sci ; 652(Pt B): 1554-1567, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37660612

RESUMO

Cotton fabric composites were designed to be protected by fire safe thermoplastic polyurethane (TPU) composites for developing electromagnetic interference (EMI) shielding polymer composites with superior mechanical properties. Herein, the as-prepared MXene was coated onto the fiber surface of cotton and then thermally compressed with TPU composites, which were filled with the sodium dodecyl sulfate modified layered double hydroxides functionalized the short carbon fiber hybrids through melt blending method. Then, a series of highly fire safe cotton/TPU hierarchical composites were constructed by a designed thermal compression technique. For instance, the obtained cotton/TPU hierarchical sample showed greatly reduced peak of heat release rate, peak of carbon monoxide production rate and peak of carbon dioxide production rate of TPU by 50.1%, 52.1% and 55.4%, respectively. Furthermore, the cotton/TPU hierarchical composites possessed the EMI shielding effectiveness of 40.0 dB in the X band and 54.6 dB in the K band. The mechanical property of the cotton/TPU hierarchical composites was also reinforced, where the elongation at break and toughness values of the TPU/SCF/mLDH1/C2 hierarchical composite were 21.47 and 18.30 times higher than those of pure TPU, respectively. These mechanically strong hierarchical composites have brought a promising attempt to broaden their practical application, removing the fire hazards and electromagnetic waves radiation from the environment.

7.
Sci Bull (Beijing) ; 68(24): 3261-3277, 2023 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-37722927

RESUMO

Historically, fire disasters have killed numerous human lives, and caused tremendous property loss. Fire warning systems play a vital role in predicting fire risks, and are strongly desired to effectively prevent the disaster occurrence and significantly reduce the loss. Among the developed fire warning systems, thermoelectrics (TEs) and thermocells (TECs)-based fire warning materials are extremely important and indispensable in future research, owing to their unique capability of direct conversion between heat and electricity. Here, we present this review of the recent progress of TEs and TECs in fire warning field. Firstly, a brief introduction of existing fire warning systems is provided, including the mechanisms and features of various types. Then, the mechanisms of electronic TE (eTE), ionic TE (iTE) and TEC are elucidated. Next, the basic principles for the material preparation and device fabrication are discussed in their dimension sequence. Subsequently, some important advances or examples of TE fire warnings are highlighted in details. Finally, the challenges and prospects are outlooked.

8.
Nanomicro Lett ; 15(1): 174, 2023 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-37420043

RESUMO

Composite organohydrogels have been widely used in wearable electronics. However, it remains a great challenge to develop mechanically robust and multifunctional composite organohydrogels with good dispersion of nanofillers and strong interfacial interactions. Here, multifunctional nanofiber composite reinforced organohydrogels (NCROs) are prepared. The NCRO with a sandwich-like structure possesses excellent multi-level interfacial bonding. Simultaneously, the synergistic strengthening and toughening mechanism at three different length scales endow the NCRO with outstanding mechanical properties with a tensile strength (up to 7.38 ± 0.24 MPa), fracture strain (up to 941 ± 17%), toughness (up to 31.59 ± 1.53 MJ m-3) and fracture energy (up to 5.41 ± 0.63 kJ m-2). Moreover, the NCRO can be used for high performance electromagnetic interference shielding and strain sensing due to its high conductivity and excellent environmental tolerance such as anti-freezing performance. Remarkably, owing to the organohydrogel stabilized conductive network, the NCRO exhibits superior long-term sensing stability and durability compared to the nanofiber composite itself. This work provides new ideas for the design of high-strength, tough, stretchable, anti-freezing and conductive organohydrogels with potential applications in multifunctional and wearable electronics.

9.
J Colloid Interface Sci ; 647: 467-477, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37271091

RESUMO

An abundance of early warning graphene-based nano-materials and sensors have been developed to avoid and prevent the critical fire risk of combustible materials. However, there are still some limitations that should be addressed, such as the black color, high-cost and single fire warning response of graphene-based fire warning materials. Herein, we report an unexpected montmorillonite (MMT)-based intelligent fire warning materials that have excellent fire cyclic warning performance and reliable flame retardancy. Combining phenyltriethoxysilane (PTES) molecules, poly(p-phenylene benzobisoxazole) nanofiber (PBONF), and layers of MMT to form a silane crosslinked 3D nanonetwork system, the homologous PTES decorated MMT-PBONF nanocomposites are designed and fabricated via a sol-gel process and low temperature self-assembly method. The optimized nanocomposite paper shows good mechanical flexibility (good recovery after kneading or bending process), high tensile strength of âˆ¼81 MPa and good water resistance. Furthermore, the nanocomposite paper exhibits high-temperature flame resistance (almost unchanged structure and size after 120 s combustion), sensitive flame alarm response (∼0.3 s response once exposure onto a flame), cyclic fire warning performance (>40 cycles), and adaptability to complex fire situations (several fire attack and evacuation scenarios), showing promising applications for monitoring the critical fire risk of combustible materials. Therefore, this work paves a rational way for design and fabrication of MMT-based smart fire warning materials that combine excellent flame shielding and sensitive fire alarm functions.

10.
J Colloid Interface Sci ; 648: 798-808, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37327623

RESUMO

Chemical spills, especially oil spills, are becoming an increasingly serious environmental issue. It remains a challenge to develop green techniques to prepare mechanically robust oil-water separation materials, especially those capable of separating high-viscosity crude oils. Herein, we propose an environmentally friendly emulsion spray-coating method to fabricate durable foam composites with asymmetric wettability for oil-water separation. After the emulsion, composed of acidified carbon nanotubes (ACNTs), polydimethylsiloxane (PDMS) and its curing agent, is sprayed onto melamine foam (MF), water in the emulsion is first evaporated, while PDMS and ACNTs are finally deposited on the foam skeleton. The foam composite exhibits gradient wettability and turns from superhydrophobicity of the top surface (the water contact angle reaches as high as 155.2°) to hydrophilicity of the interior region. The foam composite can be used for the separation of oils with different densities and has a 97% separation efficiency for chloroform. In particular, the photothermal conversion-induced temperature rise can reduce the oil viscosity and complete the high-efficiency cleanup of crude oil. This emulsion spray-coating technique and asymmetric wettability show promise for the green and low-cost fabrication of high-performance oil/water separation materials.

11.
Polymers (Basel) ; 15(11)2023 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-37299305

RESUMO

In this work, a durable superhydrophobic fabric was fabricated by using a facile UV-induced surface covalent modification strategy. 2-isocyanatoethylmethacrylate (IEM) containing isocyanate groups can react with the pre-treated hydroxylated fabric, producing IEM molecules covalently grafted onto the fabric's surface, and the double bonds of IEM and dodecafluoroheptyl methacrylate (DFMA) underwent a photo-initiated coupling reaction under UV light radiation, resulting in the DFMA molecules further grafting onto the fabric's surface. The Fourier transform infrared, X-ray photoelectron spectroscopy and scanning electron microscopy results revealed that both IEM and DFMA were covalently grafted onto the fabric's surface. The formed rough structure and grafted low-surface-energy substance contributed to the excellent superhydrophobicity (water contact angle of ~162°) of the resultant modified fabric. Notably, such a superhydrophobic fabric can be used for efficient oil-water separation, for example a high separation efficiency of over 98%. More importantly, the modified fabric exhibited excellent durable superhydrophobicity in harsh conditions such as immersion in organic solvents for 72 h, an acidic or alkali solution (pH = 1-12) for 48 h, undergoing laundry washing for 3 h, exposure to extreme temperatures (from -196° to 120°), as well as damage such as 100 cycles of tape-peeling and a 100-cycle abrasion test; the water contact angle only slightly decreased from ~162° to 155°. This was attributed to the IEM and DFMA molecules grated onto the fabric through stable covalent interactions, which could be accomplished using the facile strategy, where the alcoholysis of isocyanate and the grafting of DFMA via click coupling chemistry were integrated into one-step. Therefore, this work provides a facile one-step surface modification strategy for preparing durable superhydrophobic fabric, which is promising for efficient oil-water separation.

12.
Molecules ; 28(6)2023 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-36985584

RESUMO

The feature of low-density and thermal insulation properties of polydimethylsiloxane (PDMS) foam is one of the important challenges of the silicone industry seeking to make these products more competitive compared to traditional polymer foams. Herein, we report a green, simple, and low-cost strategy for synthesizing ultra-low-density porous silicone composite materials via Si-H cross-linking and foaming chemistry, and the sialylation-modified hollow glass microspheres (m-HM) were used to promote the HM/PDMS compatibility. Typically, the presence of 7.5 wt% m-HM decreases the density of pure foam from 135 mg/cm-3 to 104 mg/cm-3 without affecting the foaming reaction between Si-H and Si-OH and produces a stable porous structure. The optimized m-HM-modified PDMS foam composites showed excellent mechanical flexibility (unchanged maximum stress values at a strain of 70% after 100 compressive cycles) and good thermal insulation (from 150.0 °C to 52.1 °C for the sample with ~20 mm thickness). Our results suggest that the use of hollow microparticles is an effective strategy for fabricating lightweight, mechanically flexible, and thermal insulation PDMS foam composite materials for many potential applications.

13.
J Colloid Interface Sci ; 641: 893-902, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36972624

RESUMO

The one-way transportation of liquids plays an important role in smart and wearable electronics. Here, we report an asymmetric nanofibrous membrane (ANM) with unidirectional water transport (UWT) capability by integrating one superhydrophilic MXene/Chitosan/Polyurethane (PU) nanofiber membrane (MCPNM) and one ultrathin hydrophobic PU/Polyvinylpyrrolidone (PVP) layer with a "bead-on-string" structure. The UWT performance shows long-term stability and can be well maintained during the cyclic stretching, abrasion and ultrasonic washing tests. The ANM exhibits negative temperature coefficient and is served as a temperature sensor to monitor the temperature variation of the environment, which can provide efficient alarm signals in a hot or cold condition. When attached on person's skin, the ANM displays a unique anti-gravity UWT behavior. The stretchable, wearable and multi-functional nanofibrous composite membrane with an asymmetric wettability shows potential applications in flexible and wearable electronics, health monitoring, etc.

14.
Soft Robot ; 10(2): 354-364, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36318819

RESUMO

Dielectric elastomer actuators (DEAs) are widely used in robotics and artificial muscles because of their large energy densities and short response time. In this study, we developed two types of soft ray-inspired robots using solid-liquid interpenetrating silicone-based DEAs, named SIS DEAs. The optimized SIS DEA had an actuation strain of 79.8% at 20.43 kV/mm in a freestanding state, which was used as the muscle of the ray robot. To imitate the swimming behavior of the ray, the effect of the driving frequency on the velocity of the ray robot was explored. The ray robot achieved a maximum swimming rate of 5.7 mm/s when the driving frequency was ∼0.6 Hz. In addition, the steady-state and the transient simulation were carried out to reveal the mechanism of the ray robot's electro-swimming. The results revealed that the actuating deformation of the SIS DEAs caused the electro-deformation of the ray robot, and the periodical electro-deformation generated the high-speed vortex beneath the robot to push the ray robot forward. The high actuation strain in the freestanding state and the shape customizability of the SIS DEAs made it an ideal alternative to muscles for various soft robots.

15.
ACS Nano ; 16(12): 20865-20876, 2022 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-36468754

RESUMO

A graphene oxide (GO)-based smart fire alarm sensor (FAS) has gained rapidly increasing research interest in fire safety fields recently. However, it still remains a huge challenge to obtain desirable GO-based FAS materials with integrated performances of mechanical flexibility/robustness, harsh environment-tolerance, high-temperature resistance, and reliable fire warning and protection. In this work, based on bionic design, the supermolecule melamine diborate (M·2B) was combined with GO nanosheets to form supramolecular cross-linking nanosystems, and the corresponding GO-M·2B (GO/MB) hybrid papers with a nacre-like micro/nano structure were successfully fabricated via a gel-dry method. The optimized GO/MB paper exhibits enhanced mechanical properties, e.g., tensile strength and toughness up to ∼122 MPa and ∼1.72 MJ/m3, respectively, which is ∼3.5 and ∼6.6 times higher than those of the GO paper. Besides, it also shows excellent structural stability even under acid/alkaline solution immersion and water bath ultrasonication conditions. Furthermore, due to the presence of promoting reduction effect and atom doping reactions in GO network, the resulting GO/MB network displays exceptional high-temperature resistance, sensitive fire alarm response (∼0.72 s), and ultralong alarming time (>1200 s), showing promising fire safety and protection application prospects as desirable FAS and fire shielding material with excellent comprehensive performances. Therefore, this work provides inspiration for the design and fabrication of high-performance GO-based smart materials that combine fire shielding and alarm functions.

16.
Nanomaterials (Basel) ; 12(12)2022 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-35745302

RESUMO

Smart fire-warning sensors based on graphene oxide (GO) nanomaterials, via monitoring their temperature-responsive resistance transition, have attracted considerable interest for several years. However, an important question remains as to whether or not different oxidation degrees of the GO network can produce different impacts on fire-warning responses. In this study, we synthesized three types of GO nanoribbons (GONRs) with different oxidation degrees and morphologies, and thus prepared flame retardant polyethylene glycol (PEG)/GONR/montmorillonite (MMT) nanocomposite papers via a facile, solvent free, and low-temperature evaporation-induced assembly approach. The results showed that the presence of the GONRs in the PEG/MMT promoted the formation of an interconnected nacre-like layered structure, and that appropriate oxidation of the GONRs provided better reinforcing efficiency and lower creep deformation. Furthermore, the different oxidation degrees of the GONRs produced a tunable flame-detection response, and an ideal fire-warning signal in pre-combustion (e.g., 3, 18, and 33 s at 300 °C for the three PEG/GONR/MMT nanocomposite papers), superior to the previous GONR-based fire-warning materials. Clearly, this work provides a novel strategy for the design and development of smart fire-warning sensors.

17.
Polymers (Basel) ; 14(8)2022 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-35458379

RESUMO

Polydimethylsiloxane (PDMS) foam materials with lightweight, excellent oil resistance and mechanical flexibility are highly needed for various practical applications in aerospace, transportation, and oil/water separation. However, traditional PDMS foam materials usually present poor chemical resistance and easily swell in various solvents, which greatly limits their potential application. Herein, novel fluorosilicone rubber foam (FSiRF) materials with different contents of trifluoropropyl lateral groups were designed and fabricated by a green (no solvents used) and rapid (<10 min foaming process) foaming/crosslinking approach at ambient temperature. Typically, vinyl-terminated poly(dimethyl-co-methyltrifluoropropyl) siloxanes with different fluorine contents of 0−50 mol% were obtained through ring-opening polymerization to effectively adjust the chemical resistance of the FSiRFs. Notably, the optimized FSiRF samples exhibit lightweight (~0.25 g/cm−3), excellent hydrophobicity/oleophilicity (WCA > 120°), reliable mechanical flexibility (complete recovery ability after stretching of 130% strain or compressing of >60%), and improved chemical resistance and structural stability in various solvents, making them promising candidates for efficient and continuous oil−water separation. This work provides an innovative concept to design and prepare advanced fluorosilicone rubber foam materials with excellent chemical resistance for potential oil−water separation application.

18.
Nanomicro Lett ; 14(1): 92, 2022 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-35384618

RESUMO

Smart fire alarm sensor (FAS) materials with mechanically robust, excellent flame retardancy as well as ultra-sensitive temperature-responsive capability are highly attractive platforms for fire safety application. However, most reported FAS materials can hardly provide sensitive, continuous and reliable alarm signal output due to their undesirable temperature-responsive, flame-resistant and mechanical performances. To overcome these hurdles, herein, we utilize the multi-amino molecule, named HCPA, that can serve as triple-roles including cross-linker, fire retardant and reducing agent for decorating graphene oxide (GO) sheets and obtaining the GO/HCPA hybrid networks. Benefiting from the formation of multi-interactions in hybrid network, the optimized GO/HCPA network exhibits significant increment in mechanical strength, e.g., tensile strength and toughness increase of ~ 2.3 and ~ 5.7 times, respectively, compared to the control one. More importantly, based on P and N doping and promoting thermal reduction effect on GO network, the excellent flame retardancy (withstanding ~ 1200 °C flame attack), ultra-fast fire alarm response time (~ 0.6 s) and ultra-long alarming period (> 600 s) are obtained, representing the best comprehensive performance of GO-based FAS counterparts. Furthermore, based on GO/HCPA network, the fireproof coating is constructed and applied in polymer foam and exhibited exceptional fire shielding performance. This work provides a new idea for designing and fabricating desirable FAS materials and fireproof coatings.

19.
Small Methods ; 5(4): e2001040, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-34927857

RESUMO

Fire has been giving rise to enormous loss of life and property worldwide annually. Early fire warning represents an active and effective means to avoid potential fire hazards before huge losses occur. Despite encouraging advances in early fire warning systems, to date there remains an urgent lack of the design of a durable, flexible, and universal early fire warning sensor for large-area practical applications. Herein, facile fabrication of a durable, flexible, large-scale early fire-warning sensor is demonstrated through constructing a hierarchical flame retardant nanocoating, composed of graphene oxide, poly(dimethylaminoethyl methacrylate), and hexagonal boron nitride, on cotton fabric in combination with the parallelly patterned conductive ink as built-in electrodes. As-designed large-scale sensor (>33 cm and extendable) exhibits a short alarming time of <3 s in response to external abnormal high temperature, heat, or fire. In addition to high washability, flexibility, resistance to abrasion and wear, this hierarchical nanocoating can self-extinguish, thus enabling the sensor to continue warning during fire. This work offers an inventive concept to develop a universal and large-scale very early fire-monitoring platform, which opens up new opportunities for their practical applications in effectively reducing fire-related casualties and economic losses.

20.
ACS Appl Mater Interfaces ; 13(19): 23161-23172, 2021 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-33955739

RESUMO

Superhydrophobic surfaces are imperative in flexible polymer foams for diverse applications; however, traditional surface coatings on soft skeletons are often fragile and can hardly endure severe deformation, making them unstable and highly susceptible to cyclic loadings. Therefore, it remains a great challenge to balance their mutual exclusiveness of mechanical robustness and surface water repellency on flexible substrates. Herein, we describe how robust superhydrophobic surfaces on soft poly(dimethylsiloxane) (PDMS) foams can be achieved using an extremely simple, ultrafast, and environmentally friendly flame scanning strategy. The ultrafast flame treatment (1-3 s) of PDMS foams produces microwavy and nanosilica rough structures bonded on the soft skeletons, forming robust superhydrophobic surfaces (i.e., water contact angles (WCAs) > 155° and water sliding angles (WSAs) < 5°). The rough surface can be effectively tailored by simply altering the flame scanning speed (2.5-15.0 cm/s) to adjust the thermal pyrolysis of the PDMS molecules. The optimized surfaces display reliable mechanical robustness and excellent water repellency even after 100 cycles of compression of 60% strain, stretching of 100% strain, and bending of 90° and hostile environmental conditions (including acid/salt/alkali conditions, high/low temperatures, UV aging, and harsh cyclic abrasion). Moreover, such flame-induced superhydrophobic surfaces are easily peeled off from ice and can be healable even after severe abrasion cycles. Clearly, the flame scanning strategy provides a facile and versatile approach for fabricating mechanically robust and surface superhydrophobic PDMS foam materials for applications in complex conditions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...