Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Small ; 15(39): e1900950, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31402551

RESUMO

Conventional pressure sensing devices are well developed for either indirect evaluation or internal measuring of fluid pressure over millimeter scale. Whereas, specialized pressure sensors that can directly work in various liquid environments at micrometer scale remain challenging and rarely explored, but are of great importance in many biomedical applications. Here, pressure sensor technology that utilizes capillary action to self-assemble the pressure-sensitive element is introduced. Sophisticated control of capillary flow, tunable sensitivity to liquid pressure in various mediums, and multiple transduction modes are realized in a polymer device, which is also flexible (thickness of 8 µm), ultraminiature (effective volume of 18 × 100 × 580 µm3 ), and transparent, enabling the sensor to work in some extreme situations, such as in narrow inner spaces (e.g., a microchannel of 220 µm in width and 100 µm in height), or on the surface of small objects (e.g., a 380 µm diameter needle). Potential applications of this sensor include disposables for in vivo and short-term measurements.


Assuntos
Técnicas Biossensoriais/métodos , Líquidos Corporais , Desenho de Equipamento , Pressão
2.
RSC Adv ; 9(14): 7842-7848, 2019 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-35521210

RESUMO

With the discovery of the liquid spreading mechanism on the peristome of Nepenthes alata, many studies focusing on uni-directional liquid spreading microstructures have been carried out with an emphasis on structural improvement and the spreading mechanism. Although there are various kinds of microstructures that can accomplish small-scale liquid uni-directional transportation, liquid spreading has not been optimized on a slope because of the unwanted backward flow generated by fabrication defects; inspired by the microstructure of the peristome surface of Nepenthes and the topography of the lizard skin, in this study, we present an innovative, easily processed microstructure that possesses the property of intensified uni-directional liquid spreading even on an oblique substrate. This property is derived from a new, hybrid mechanism that can significantly enhance the uni-directional liquid transportation.

3.
Micromachines (Basel) ; 8(9)2017 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-30400473

RESUMO

With the rapid development of Micro-electro-mechanical Systems (MEMS) fabrication technologies, many microelectrodes with various structures and functions have been designed and fabricated for applications in biomedical research, diagnosis and treatment through electrical stimulation and electrophysiological signal recording. The flexible MEMS microelectrodes exhibit excellent characteristics in many aspects beyond stiff microelectrodes based on silicon or metal, including: lighter weight, smaller volume, better conforming to neural tissue and lower fabrication cost. In this paper, we reviewed the key technologies in flexible MEMS microelectrodes for neural interface in recent years, including: design and fabrication technology, flexible MEMS microelectrodes with fluidic channels and electrode⁻tissue interface modification technology for performance improvement. Furthermore, the future directions of flexible MEMS microelectrodes for neural interface were described, including transparent and stretchable microelectrodes integrated with multi-functional aspects and next-generation electrode⁻tissue interface modifications, which facilitated electrode efficacy and safety during implantation. Finally, we predict that the relationships between micro fabrication techniques, and biomedical engineering and nanotechnology represented by flexible MEMS microelectrodes for neural interface, will open a new gate to better understanding the neural system and brain diseases.

4.
Sci Rep ; 6: 26910, 2016 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-27229174

RESUMO

Implantable biomedical microdevices enable the restoration of body function and improvement of health condition. As the interface between artificial machines and natural tissue, various kinds of microelectrodes with high density and tiny size were developed to undertake precise and complex medical tasks through electrical stimulation and electrophysiological recording. However, if only the electrical interaction existed between electrodes and muscle or nerve tissue without nutrition factor delivery, it would eventually lead to a significant symptom of denervation-induced skeletal muscle atrophy. In this paper, we developed a novel flexible tubular microelectrode integrated with fluidic drug delivery channel for dynamic tissue implant. First, the whole microelectrode was made of biocompatible polymers, which could avoid the drawbacks of the stiff microelectrodes that are easy to be broken and damage tissue. Moreover, the microelectrode sites were circumferentially distributed on the surface of polymer microtube in three dimensions, which would be beneficial to the spatial selectivity. Finally, the in vivo results confirmed that our implantable tubular microelectrodes were suitable for dynamic electrophysiological recording and simultaneous fluidic drug delivery, and the electrode performance was further enhanced by the conducting polymer modification.


Assuntos
Sistemas de Liberação de Medicamentos/instrumentação , Eletrodos Implantados , Implantes Experimentais , Dispositivos Lab-On-A-Chip , Músculo Esquelético/inervação , Animais , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Compostos Bicíclicos Heterocíclicos com Pontes/química , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Impedância Elétrica , Estimulação Elétrica , Feminino , Microeletrodos , Músculo Esquelético/irrigação sanguínea , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/cirurgia , Células PC12 , Polímeros/química , Polímeros/farmacologia , Implantação de Prótese/métodos , Ratos , Ratos Sprague-Dawley , Xilenos/química , Xilenos/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA