Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mater Horiz ; 11(12): 2898-2905, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38567411

RESUMO

The demand for ultra-high-temperature piezoelectric sensors in industrial applications has witnessed a rapid upsurge. In this study, the piezoelectric properties of La2Ti2O7 (LTO) piezoelectric ceramics with a perovskite-like layered structure were enhanced by doping with Li/Ce ions. It was found that a remarkable 300% enhancement in the piezoelectric constant (d33) value was achieved in Li/Ce-doped LTO ceramics compared to their pristine counterparts, reaching 6.4 pC N-1 at room temperature with an ultra-high Curie temperature of 1408 °C. After annealing at 500 °C, the d33 value of the samples can be further improved to 7.4 pC N-1. Moreover, temperature-dependent resistivity measurements indicate that even at 1000 °C, the ceramics exhibit a high resistivity of 8.9 × 105 Ω cm. By combining X-ray diffraction, Raman spectra, transmission electron microscopy and piezoresponse force microscopy data, the enhanced piezoelectricity of the ceramics is attributed to local heterogeneity induced by Li/Ce doping. Our results unequivocally demonstrate the suitability of modified LTO ceramics for ultra-high-temperature piezoelectric applications.

2.
ACS Appl Mater Interfaces ; 15(30): 36576-36586, 2023 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-37477429

RESUMO

The high mechanical quality factor (Qm) of KNN-based ceramics is usually achieved by acceptor doping. However, this hardening effect has serious limitations due to the increased mobility of oxygen vacancies under large electric fields and hence is difficult to use in high-power applications. In this work, the hardening mechanism is demonstrated by the development composites of the 0.957(K0.48Na0.52)Nb0.94Ta0.06O3-0.04(Bi0.5Na0.5)ZrO3-0.003BiFeO3 (KNNT-BNZ-BFO) matrix with the K4CuNb8O23 (KCN) phase using the two-step ball-milling method. A decrease in remnant polarization and dielectric constant and an increase in resistivity and Qm are observed compared to that in the KNNT-BNZ-BFO sample. A high Qm of 160, Curie temperature, TC, of 310 °C, and piezoelectric coefficient, d33, of 330 pC/N can be obtained simultaneously in the composite with a 0.008 mole ratio of KCN. This can be explained by the mechanical clamping effect of KCN due to strain incompatibility and the domain wall pegging that traps charges at the KNNT-BNZ-BFO/KCN interface. This composite approach is considered a general hardening concept and can be extended to other KNN-based ceramic systems.

3.
Inorg Chem ; 61(46): 18660-18669, 2022 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-36367455

RESUMO

An easy approach is suggested to obtain excellent piezoelectric performances in potassium sodium niobate (KNN)-based ceramics simultaneously with low dielectric loss (tanδ), high Curie temperature (TC), and electromechanical coupling factor (kp). Herein, a KNN-based ceramics system with nonstoichiometric Nb5+ is designed. Excessive Nb5+ occupying the B-site significantly influences the microstructural features and electrical properties of KNN-based ceramics. Furthermore, the excessive Nb5+ improves the temperature stability of ceramics by providing the domain wall pegging effect and defect dipole. A high TC = 300 °C, large kp = 0.516, and d33 = 450 pC/N can be simultaneously obtained in the KNN-based ceramics with nonstoichiometric Nb5+. These results confirm that the comprehensive electrical properties of KNN-based ceramics can be tuned by optimizing the content of nonstoichiometric Nb5+.

4.
ACS Appl Mater Interfaces ; 12(41): 45997-46004, 2020 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-32924420

RESUMO

The vital challenge of a layered manganese oxide cathode for sodium-ion batteries is its severe capacity degradation and sluggish ion diffusion kinetics caused by irreversible phase transitions. In response to this problem, the spinel-layered manganese-based composite with an intergrowth structure is ingeniously designed by virtue of an interesting spinel-to-layered transformation in the delithiated LiMn2O4 under Na+ insertion. This unique spinel-layered intergrowth structure is strongly confirmed by combining multiple structure analysis techniques. The layered component can provide more reversible capacity, while the spinel component is crucial for the stabilized crystal structure and accelerated ion diffusion kinetics. As an appealing cathode for sodium-ion batteries, the layered-spinel composite delivers a high reversible capacity of 180.9 mAh g-1, excellent cycling stability, and superior rate capability with 55.7 mAh g-1 at 12 C. Furthermore, the reaction mechanism upon Na+ extraction/insertion is revealed in detail by ex situ X-ray diffraction and X-ray photoelectron spectroscopy, indicating that Na+ ions can be accommodated by the layered structure at a low voltage and by the spinel at a high voltage. This study will provide a new idea for the rational design of an advanced cathode for sodium-ion batteries.

5.
Small ; 15(52): e1905311, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31663266

RESUMO

Inspired by its high-active and open layered framework for fast Li+ extraction/insertion reactions, layered Ni-rich oxide is proposed as an outstanding Na-intercalated cathode for high-performance sodium-ion batteries. An O3-type Na0.75 Ni0.82 Co0.12 Mn0.06 O2 is achieved through a facile electrochemical ion-exchange strategy in which Li+ ions are first extracted from the LiNi0.82 Co0.12 Mn0.06 O2 cathode and Na+ ions are then inserted into a layered oxide framework. Furthermore, the reaction mechanism of layered Ni-rich oxide during Na+ extraction/insertion is investigated in detail by combining ex situ X-ray diffraction, X-ray photoelectron spectroscopy, and electron energy loss spectroscopy. As an excellent cathode for Na-ion batteries, O3-type Na0.75 Ni0.82 Co0.12 Mn0.06 O2 delivers a high reversible capacity of 171 mAh g-1 and a remarkably stable discharge voltage of 2.8 V during long-term cycling. In addition, the fast Na+ transport in the cathode enables high rate capability with 89 mAh g-1 at 9 C. The as-prepared Ni-rich oxide cathode is expected to significantly break through the limited performance of current sodium-ion batteries.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...