Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Bioeng Biotechnol ; 10: 891808, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35646841

RESUMO

Manipulating transfer RNAs (tRNAs) for emancipating sense codons to simplify genetic codons in a cell-free protein synthesis (CFPS) system can offer more flexibility and controllability. Here, we provide an overview of the tRNA complement protein synthesis system construction in the tRNA-depleted Protein synthesis Using purified Recombinant Elements (PURE) system or S30 extract. These designed polypeptide coding sequences reduce the genetic codon and contain only a single tRNA corresponding to a single amino acid in this presented system. Strategies for removing tRNAs from cell lysates and synthesizing tRNAs in vivo/vitro are summarized and discussed in detail. Furthermore, we point out the trend toward a minimized genetic codon for reducing codon redundancy by manipulating tRNAs in the different proteins. It is hoped that the tRNA complement protein synthesis system can facilitate the construction of minimal cells and expand the biomedical application scope of synthetic biology.

2.
Adv Biol (Weinh) ; 6(10): e2200023, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35676219

RESUMO

Termination of translation is essential but hinders applications of genetic code engineering, e.g., unnatural amino acids incorporation and codon randomization mediated saturation mutagenesis. Here, for the first time, it is demonstrated that E. coli Pth and ArfB together play an efficient translation termination without codon preference in the absence of class-I release factors. By degradation of the targeted protein, both essential and alternative termination types of machinery are completely removed to disable codon-dependent termination in cell extract. Moreover, a total of 153 engineered tRNAs are screened for efficient all stop-codons decoding to construct a codon-dependent termination defect in vitro protein synthesis with all 64 sense-codons, iPSSC. Finally, this full sense genetic code achieves significant improvement in the incorporation of distinct unnatural amino acids at up to 12 positions and synthesis of protein encoding consecutive NNN codons. By decoding all information in nucleotides to amino acids, iPSSC may hold great potential in building artificial protein synthesis beyond the cell.


Assuntos
Aminoácidos , Escherichia coli , Escherichia coli/genética , Extratos Celulares , Códon/genética , Aminoácidos/genética , Proteínas/genética , Nucleotídeos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...