Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Transl Med ; 22(1): 682, 2024 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-39060930

RESUMO

BACKGROUND: Silicosis is an irreversible fibrotic disease of the lung caused by chronic exposure to silica dust, which manifests as infiltration of inflammatory cells, excessive secretion of pro-inflammatory cytokines, and pulmonary diffuse fibrosis. As the disease progresses, lung function further deteriorates, leading to poorer quality of life of patients. Currently, few effective drugs are available for the treatment of silicosis. Bicyclol (BIC) is a compound widely employed to treat chronic viral hepatitis and drug-induced liver injury. While recent studies have demonstrated anti-fibrosis effects of BIC on multiple organs, including liver, lung, and kidney, its therapeutic benefit against silicosis remains unclear. In this study, we established a rat model of silicosis, with the aim of evaluating the potential therapeutic effects of BIC. METHODS: We constructed a silicotic rat model and administered BIC after injury. The FlexiVent instrument with a forced oscillation system was used to detect the pulmonary function of rats. HE and Masson staining were used to assess the effect of BIC on silica-induced rats. Macrophages-inflammatory model of RAW264.7 cells, fibroblast-myofibroblast transition (FMT) model of NIH-3T3 cells, and epithelial-mesenchymal transition (EMT) model of TC-1 cells were established in vitro. And the levels of inflammatory mediators and fibrosis-related proteins were evaluated in vivo and in vitro after BIC treatment by Western Blot analysis, RT-PCR, ELISA, and flow cytometry experiments. RESULTS: BIC significantly improved static compliance of lung and expiratory and inspiratory capacity of silica-induced rats. Moreover, BIC reduced number of inflammatory cells and cytokines as well as collagen deposition in lungs, leading to delayed fibrosis progression in the silicosis rat model. Further exploration of the underlying molecular mechanisms revealed that BIC suppressed the activation, polarization, and apoptosis of RAW264.7 macrophages induced by SiO2. Additionally, BIC inhibited SiO2-mediated secretion of the inflammatory cytokines IL-1ß, IL-6, TNF-α, and TGF-ß1 in macrophages. BIC inhibited FMT of NIH-3T3 as well as EMT of TC-1 in the in vitro silicosis model, resulting in reduced proliferation and migration capability of NIH-3T3 cells. Further investigation of the cytokines secreted by macrophages revealed suppression of both FMT and EMT by BIC through targeting of TGF-ß1. Notably, BIC blocked the activation of JAK2/STAT3 in NIH-3T3 cells required for FMT while preventing both phosphorylation and nuclear translocation of SMAD2/3 in TC-1 cells necessary for the EMT process. CONCLUSION: The collective data suggest that BIC prevents both FMT and EMT processes, in turn, reducing aberrant collagen deposition. Our findings demonstrate for the first time that BIC ameliorates inflammatory cytokine secretion, in particular, TGF-ß1, and consequently inhibits FMT and EMT via TGF-ß1 canonical and non-canonical pathways, ultimately resulting in reduction of aberrant collagen deposition and slower progression of silicosis, supporting its potential as a novel therapeutic agent.


Assuntos
Fibrose Pulmonar , Transdução de Sinais , Silicose , Fator de Crescimento Transformador beta1 , Animais , Silicose/tratamento farmacológico , Silicose/patologia , Silicose/metabolismo , Silicose/complicações , Fibrose Pulmonar/tratamento farmacológico , Fibrose Pulmonar/patologia , Fibrose Pulmonar/complicações , Camundongos , Transdução de Sinais/efeitos dos fármacos , Células RAW 264.7 , Masculino , Fator de Crescimento Transformador beta1/metabolismo , Células NIH 3T3 , Ratos , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Pulmão/patologia , Pulmão/efeitos dos fármacos , Citocinas/metabolismo , Macrófagos/metabolismo , Macrófagos/efeitos dos fármacos , Inflamação/patologia , Ratos Sprague-Dawley , Modelos Animais de Doenças , Fibroblastos/metabolismo , Fibroblastos/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Compostos de Bifenilo
2.
Antioxidants (Basel) ; 13(7)2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-39061872

RESUMO

Pregabalin is a medication primarily used in the treatment of neuropathic pain and anxiety disorders, owing to its gabapentinoid properties. Pregabalin monotherapy faces limitations due to its variable efficacy and dose-dependent adverse reactions. In this study, we conducted a comprehensive investigation into the potentiation of pregabalin's analgesic effects by dexborneol, a neuroprotective bicyclic monoterpenoid compound. We performed animal experiments where pain models were induced using two methods: peripheral nerve injury, involving axotomy and ligation of the tibial and common peroneal nerves, and incisional pain through a longitudinal incision in the hind paw, while employing a multifaceted methodology that integrates behavioral pharmacology, molecular biology, neuromorphology, and lipidomics to delve into the mechanisms behind this potentiation. Dexborneol was found to enhance pregabalin's efficacy by promoting its transportation to the central nervous system, disrupting self-amplifying vicious cycles via the reduction of HMGB1 and ATP release, and exerting significant anti-oxidative effects through modulation of central lipid metabolism. This combination therapy not only boosted pregabalin's analgesic property but also notably decreased its side effects. Moreover, this therapeutic cocktail exceeded basic pain relief, effectively reducing neuroinflammation and glial cell activation-key factors contributing to persistent and chronic pain. This study paves the way for more tolerable and effective analgesic options, highlighting the potential of dexborneol as an adjuvant to pregabalin therapy.

3.
J Ethnopharmacol ; 306: 116158, 2023 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-36638854

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Dengzhan shengmai (DZSM) formula, composed of four herbal medicines (Erigeron breviscapus, Panax ginseng, Schisandra chinensis, and Ophiopogon japonicus), is widely used in the recovery period of ischemic cerebrovascular diseases; however, the associated molecular mechanism remains unclear. AIM OF THE STUDY: The purpose of this study was to uncover the links between the microbiota-gut-brain axis and the efficacy of DZSM in ameliorating cerebral ischemic diseases. MATERIALS AND METHODS: The effects of DZSM on the gut microbiota community and bacteria-derived short-chain fatty acid (SCFA) production were evaluated in vivo using a rat model of cerebral ischemia and in vitro through the anaerobic incubation with fresh feces derived from model animals. Subsequently, the mechanism underlying the role of SCFAs in the DZSM-mediated treatment of cerebral ischemia was explored. RESULTS: We found that DZSM treatment significantly altered the composition of the gut microbiota and markedly enhanced SCFA production. The consequent increase in SCFA levels led to the upregulation of the expression of monocarboxylate transporters and facilitated the transportation of intestinal SCFAs into the brain, thereby inhibiting the apoptosis of neurocytes via the regulation of the PI3K/AKT/caspase-3 pathway. The increased intestinal SCFA levels also contributed to the repair of the 2VO-induced disruption of gut barrier integrity and inhibited the translocation of lipopolysaccharide from the intestine to the brain, thus attenuating neuroinflammation. Consequently, cerebral neuropathy and oxidative stress were significantly improved in 2VO model rats, leading to the amelioration of cerebral ischemia-induced cognitive dysfunction. Finally, fecal microbiota transplantation could reproduce the beneficial effects of DZSM on SCFA production and cerebral ischemia. CONCLUSIONS: Our findings suggested that SCFAs mediate the effects of DZSM in ameliorating cerebral ischemia via the gut microbiota-gut-brain axis.


Assuntos
Isquemia Encefálica , Microbiota , Ratos , Animais , Eixo Encéfalo-Intestino , Fosfatidilinositol 3-Quinases , Ácidos Graxos Voláteis/metabolismo , Infarto Cerebral
4.
Colloids Surf B Biointerfaces ; 177: 506-511, 2019 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-30818243

RESUMO

Enterokinase (EK) is one of the most popular enzymes for the in vitro cleavage of fusion proteins due to its high degree of specificity for the amino-acid sequence (Asp)4-Lys. Enzyme reusability is desirable for reducing operating costs and facilitating the industrial application of EK. In this work, we report the controlled, site-specific and covalent cross-linking of an engineered EKLC on amine-modified magnetic nanoparticles (NH2-MNPs) via microbial transglutaminase-catalyzed bioconjugation for the development of the oriented-immobilized enzyme, namely, EKLC@NH2-MNP biocatalyst. Upon the site-specific immobilization, approximately 90% EKLC enzymatic activity was retained, and the biocatalyst exhibited more than 85% of initial enzymatic activity regardless of storage or reusable stability over a month. The EKLC@NH2-MNP biocatalyst was further applied to remove the His tag-(Asp)4-Lys fusion partner from the His tag-(Asp)4-Lys-(GLP-1)3 substrate fusion protein, result suggested the EKLC@NH2-MNP possessed remarkable reusability, without a significant decrease of enzymatic activity over 10 cycles (P > 0.05). Supported by the unique properties of MNPs, the proposed EKLC@NH2-MNP biocatalyst is expected to promote the economical utilization of enterokinase in fusion protein cleavage.


Assuntos
Biocatálise , Enteropeptidase/química , Enzimas Imobilizadas/metabolismo , Nanopartículas de Magnetita/química , Engenharia de Proteínas , Transglutaminases/metabolismo , Enteropeptidase/metabolismo , Enzimas Imobilizadas/química , Modelos Moleculares , Tamanho da Partícula , Especificidade por Substrato , Propriedades de Superfície , Transglutaminases/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...