Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev Lett ; 124(1): 010502, 2020 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-31976724

RESUMO

Ensuring the nonentanglement-breaking (non-EB) property of quantum channels is crucial for the effective distribution and storage of quantum states. However, a practical method for direct and accurate certification of the non-EB feature is highly desirable. Here, we propose and verify a realistic source based measurement device independent certification of non-EB channels. Our method is resilient to repercussions on the certification from experimental conditions, such as multiphotons and imperfect state preparation, and can be implemented with an information incomplete set. We achieve good agreement between experimental outcomes and theoretical predictions, which is validated by the expected results of the ideal semiquantum signaling game, and accurately certify the non-EB channels. Furthermore, our approach is highly robust to effects from noise. Therefore, the proposed approach can be expected to play a significant role in the design and evaluation of realistic quantum channels.

2.
Rev Sci Instrum ; 89(2): 023107, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29495856

RESUMO

Infrared sky background level is an important parameter of infrared astronomy observations from the ground, particularly for a candidate site of an infrared capable observatory since low background level is required for such a site. The Chinese astronomical community is looking for a suitable site for a future 12 m telescope, which is designed for working in both optical and infrared wavelengths. However, none of the proposed sites has been tested for infrared observations. Nevertheless, infrared sky background measurements are also important during the design of infrared observing instruments. Based on the requirement, in order to supplement the current site survey data and guide the design of future infrared instruments, a multiband near-infrared sky brightness monitor (MNISBM) based on an InSb sensor is designed in this paper. The MNISBM consists of an optical system, mechanical structure and control system, detector and cooler, high gain readout electronics, and operational software. It is completed and tested in the laboratory. The results show that the sensitivity of the MNISBM meets the requirements of the measurement of near-infrared sky background level of several well-known astronomical infrared observing sites.

3.
Rev Sci Instrum ; 87(11): 114708, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27910641

RESUMO

Real-time energy measurement using pulse integration method for high repetition rate ultrashort laser pulses based on FPGA (Field-Programmable Gate Array) and high-speed pipeline ADC (Analog-to-Digital Convertor) is introduced in this paper. There are two parts contained in this method: pulse integration and real-time data processing. The pulse integration circuit will convert the pulse to the step type signals which are linear to the laser pulse energy. Through the real-time data processing part, the amplitude of the step signals will be obtained by ADC sampling and conducting calculation in real time in FPGA. The test result shows that the method with good linearity (4.770%) and without pulse measurement missing is suitable for ultrashort laser pulses with high repetition rate up to 100 MHz.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...