Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Free Radic Biol Med ; 202: 110-120, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36997100

RESUMO

Dysfunction of the ubiquitin‒proteasome system can induce sustained endoplasmic reticulum stress (ERS) and subsequent cell death. However, malignant cells have evolved multiple mechanisms to evade sustained ERS. Therefore, identification of the mechanisms through which tumor cells develop resistance to ERS is important for the therapeutic exploitation of these cells for drug-resistant tumors. Herein, we found that proteasome inhibitors could induce ERS, activate ferroptosis signaling, and thereby induce the adaptive tolerance of tumor cells to ERS. Mechanistically, the activation of ferroptosis signaling was found to promote the formation and secretion of exosomes containing misfolded and unfolded proteins, which resulted in rescuing ERS and promoting tumor cell survival. The inhibition of ferroptosis signaling synergized with bortezomib, a clinically used proteasome inhibitor, to suppress the viability of hepatocellular carcinoma cells in vitro and in vivo. The present findings reveal that ERS resistance can be driven by an ERS-ferroptosis signaling-exosome pathway and have important clinical implications for intracellular signaling, ER homeostasis and drug-resistant cancer therapy.


Assuntos
Carcinoma Hepatocelular , Exossomos , Ferroptose , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Ferroptose/genética , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Estresse do Retículo Endoplasmático/fisiologia
2.
FEBS Lett ; 585(19): 2998-3005, 2011 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-21872591

RESUMO

It has become increasingly clear that microRNAs play an important role in many human diseases including cancer. Here, we show that expression of miR-21 in HEK293 and several colorectal cancer cells was found inversely correlated with ras homolog gene family, member B (RhoB) expression. miR-21 expression significantly suppressed RhoB 3' UTR luciferase-reporter activity, but the inhibitory effect was lost when the putative target sites were mutated. Exogenous miR-21 over-expression mimicked the effect of RhoB knockdown in promoting proliferation and invasion and inhibiting apoptosis, whereas anti-miR-21 or RhoB expression yielded opposite effects, in colorectal cancer cells. These results suggest that miR-21 is a regulator of RhoB expression and RhoB could be a useful target in exploring the potential therapeutic benefits of miR-21 mediated tumor cell behaviors in colorectal cancer.


Assuntos
Apoptose/genética , Proliferação de Células , Neoplasias Colorretais/genética , Genes Supressores de Tumor , MicroRNAs/metabolismo , Invasividade Neoplásica/genética , Proteína rhoB de Ligação ao GTP/metabolismo , Regiões 3' não Traduzidas , Sequência de Bases , Linhagem Celular Tumoral , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Regulação Neoplásica da Expressão Gênica , Células HEK293 , Humanos , MicroRNAs/genética , Dados de Sequência Molecular , Alinhamento de Sequência , Proteína rhoB de Ligação ao GTP/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...