Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Diabetes Res Clin Pract ; 213: 111749, 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38906332

RESUMO

AIM: This study aimed to evaluate the prognostic value of the Naples Prognostic Score (NPS) for predicting mortality in patients with nonalcoholic fatty liver disease (NAFLD) and compare its performance with established non-invasive fibrosis scores, including the fibrosis-4 index (FIB-4) and NAFLD fibrosis score (NFS). METHODS: Data from 10,035 NAFLD patients identified within the 1999-2018 National Health and Nutrition Examination Survey (NHANES) were analyzed. Cox regression models assessed the association between NPS and all-cause mortality, while time-dependent ROC analysis compared its predictive accuracy with FIB-4 and NFS. Mediation analysis explored the role of phenotypic age acceleration (PhenoAgeAccel). RESULTS: NPS was significantly associated with all-cause mortality, with each point increase corresponding to a 26 % increased risk (HR = 1.26, 95 % CI: 1.19-1.34). NPS demonstrated comparable predictive performance to FIB-4 and NFS, with further improvement when combined with either score (HRs of 2.03 and 2.11 for NPS + FIB-4 and NPS + NFS, respectively). PhenoAgeAccel mediated 31.5 % of the effect of NPS on mortality. CONCLUSIONS: This study found that NPS has the potential to be an independent, cost-effective, and reliable novel prognostic indicator for NAFLD that may complement existing tools and help improve risk stratification and management strategies for NAFLD, thereby preventing adverse outcomes.

2.
Endocrine ; 84(3): 1193-1205, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38411873

RESUMO

PURPOSE: 11ß-hydroxylase deficiency (11ß-OHD) constitutes a rare form of congenital adrenal hyperplasia (CAH), typically accounting for ~5-8% of CAH cases. Non-classical 11ß-OHD is reported even more rarely and frequently results in misdiagnosis or underdiagnosis due to its mild clinical symptoms. METHODS: A clinical, biochemical, radiological, and genetic study was conducted on a 9-year-old girl presenting with mild breast development, axillary hair growth, and advanced bone age. Additionally, a comprehensive review and synthesis of the literature concerning 11ß-OHD were conducted. RESULTS: The patient presented with breast enlargement, axillary hair development, and accelerated growth over the past year. Laboratory tests revealed levels of cortisol, luteinizing hormone, testosterone, and progesterone that were below normal. A gonadotropin-releasing hormone (GnRH) stimulation test suggested the possibility of central precocious puberty. Radiologic examination revealed a 2-year advance in bone age, while bilateral adrenal ultrasonography showed no abnormalities. Her mother exhibited hirsutism, while her father's physical examination revealed no abnormalities. Whole-exon genetic testing of the child and her parents indicated a heterozygous mutation of c.905_907delinsTT in exon 5 of the 11ß-hydroxylase gene (CYP11B1) in the child and her mother. This mutation resulted in a substitution of aspartic acid with valine at amino acid position 302 of the coding protein. This frameshift resulted in a sequence of 23 amino acids, culminating in a premature stop codon (p.Asp302ValfsTer23). A review of the previous literature revealed that the majority of heterozygous mutations in 11ß-OHD were missense mutations, occurring primarily in exons 2, 6, 7, and 8. The most common mutation among 11ß-OHD patients was the change of Arg-448 to His (R448H) in CYP11B1. Furthermore, bioinformatics analyses revealed that heterozygous mutation of c.905_907delinsTT had deleterious effects on the function of CYP11B1 and affected the stability of the protein, presumably leading to a partial impairment of enzyme activity. The results of the in vitro functional study demonstrated that the missense mutant (p.Asp302ValfsTer23) exhibited partial enzymatic activity. CONCLUSIONS: We report a novel heterozygous mutation of CYP11B1 (c.905_907delinsTT), enriching the spectrum of genetic variants of CYP11B1. This finding provides a valuable case reference for early diagnosis of non-classical patients with 11ß-OHD.


Assuntos
Hiperplasia Suprarrenal Congênita , Heterozigoto , Esteroide 11-beta-Hidroxilase , Humanos , Hiperplasia Suprarrenal Congênita/genética , Hiperplasia Suprarrenal Congênita/diagnóstico , Feminino , Criança , Esteroide 11-beta-Hidroxilase/genética , Mutação
3.
J Hazard Mater ; 443(Pt A): 130119, 2023 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-36265386

RESUMO

Chlorinated polyfluoroalkyl ether sulfonate (F-53B) and perfluorooctanesulfonate (PFOS) are used and emitted as fog inhibitors in the chromium plating industry, and they are widely detected worldwide. To study the effects of F-53B and PFOS on the rhizosphere defense system, they were added at two levels (0.1 and 50 mg L-1) to the soil where different plants (Lythrum salicaria and Phragmites communis) were grown. In bulk soils, high concentrations of F-53B/PFOS resulted in significant increases in soil pH, NH4+-N, and NO3--N (the effect of PFOS on NO3--N was not significant). Moreover, the extent of the effects of PFOS and F-53B on the physicochemical properties of bulk soils were different (e.g., PFOS caused an increase of NH4+-N by 8.94%-45.97% compared to 1.63%-25.20% for F-53B). Root exudates and PFASs together influenced the physicochemical properties of rhizosphere soils (e.g., TOC increased significantly in contaminated rhizosphere soils but did not change in non-bulk soils). Under the influence of F-53B/PFOS, the root exudates regulated by plants were changed and weakened the effect of F-53B/PFOS on microbial community of rhizosphere soil. The rhizosphere defense systems of different plants have both similarities and differences in response to different substances and concentrations.


Assuntos
Ácidos Alcanossulfônicos , Fluorocarbonos , Fluorocarbonos/toxicidade , Rizosfera , Ácidos Alcanossulfônicos/toxicidade , Solo
4.
J Hazard Mater ; 439: 129609, 2022 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-35870209

RESUMO

In recent years, many efforts have been made to modulate the interaction between carriers and nanoparticles under the integrity of the active site structure. Herein, SrFeO3 @CoSe2 nanocomposite was fabricated by loading CoSe2 onto SrFeO3 particles with a perovskite structure in the form of an encapsulation. The optimized SFO@CS-0.3 catalyst exhibited high catalytic activity in photo-peroxymonosulfate-based reaction and the catalyst was structurally stable over a wide temperature range. Characterization and theoretical results demonstrated that the charge in the SrFeO3 was transferred from Fe to Co cation of the CoSe2 via the interfacial oxygen atom. Moreover, the newly established oxygen-metal structure (Fe-Ov-Co) acted as a catalytic site, accelerating the cleavage of the peroxymonosulfate bond to generate radicals, which were desorbed into solution to attack the contaminant. Simultaneously, the heterojunction constructed by the catalyst underwent internal electron transfer under visible light, creating a field in which multiple reactive oxygen species co-oxidized organic contaminant.


Assuntos
Cobalto , Ferro , Cobalto/química , Elétrons , Ferro/química , Oxigênio , Peróxidos/química
5.
Environ Pollut ; 306: 119471, 2022 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-35577260

RESUMO

Wastewater treatment plants (WWTPs) are almost the only place where plastic fragments are artificially removed, resulting in mass accumulation of nanoplastics (NPs). In this research, four different concentrations (0 mg/L, 0.1 mg/L, 1 mg/L, 10 mg/L) of polystyrene nanoplastics (PS-NPs) were used to investigate the cell damage and nitrogen inhibition of activated sludge, exposed in a self-assembled SBR reactor for 30 days. Intracellular reactive oxides (ROS) and extracellular lactate dehydrogenase (LDH) increased with the rise of exposure concentration, and morphological analysis disclosed the creases, collapse, and even rupture of cell membranes. However, exposure damage (PS-NPs ≤ 1 mg/L) appeared to be reversible, attributed to that extracellular polymeric substances (EPS) secretion can thicken the three protective layers outside the membrane. PS-NPs did not disrupt the EPS chemical structure, but increased humic acid content. Prolonged exposure time (from 15 to 30 days) was directly related to the nitrogen inhibition. Due to the habitat changes under PS-NPs exposure, abundance and diversity of microorganisms in the original activated sludge decreased significantly, and the dominant phylum was occupied by Patescibacteria (PS-NPs = 10 mg/L). Changes in enzyme activities of AMO, NR, NIR, and NOR with exposure concentration may explain the conversion of nitrogen in SBR. This research broadens our horizons to understand the response mechanism of activated sludge bacteria to PS-NPs exposure individually and collectively.


Assuntos
Nanopartículas , Esgotos , Bactérias/metabolismo , Reatores Biológicos/microbiologia , Humanos , Microplásticos , Nitrogênio/análise , Esgotos/química , Eliminação de Resíduos Líquidos/métodos
6.
Water Res ; 217: 118447, 2022 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-35429889

RESUMO

Light as an environmental factor can affect the process of anaerobic digestion, but there is no systematic study in municipal wastewater sludge mesophilic digestion. In this study, the effects of light on the performance of the anaerobic digestion system and photo-anaerobic microbiota (PAM) were evaluated in lighted anaerobic batch digesters (LABRs). The methane yield from the reactor under the dark condition (LABR0) was 179.2 mL CH4/g COD, which was lower than 305.4 mL CH4/g COD and 223.0 mL CH4/g COD (n = 3, p < 0.05) from reactors under the light intensity of 3600 lm (LABR1) and 7200 lm (LABR2), respectively. The dominant genera in the bacterial and archaeal communities were Bacillus and Methanosarcina under light conditions, Enterococcus and Methanobacterium under dark conditions. And these two bacteria acted as electroactive bacterial genera, indicating that light changes the combination of direct interspecies electron transfer (DIET) microbial partners and activates the DIET pathway for methane production. The electron conduction pathways analysis further suggests that biological DIET (bDIET) between microbial biomass, rather than DIET via conductive material (cDIET) between microbes and conductive materials, is promoted and behaves as the dominant factor enhancing methane production under light conditions. The morphology of microorganisms and the amount and properties of EPS corroborate these views. Our findings are guided to anaerobic digester constructions under the outdoor environment with light exposure.


Assuntos
Microbiota , Esgotos , Anaerobiose , Bactérias/metabolismo , Reatores Biológicos/microbiologia , Digestão , Transporte de Elétrons , Metano/metabolismo , Esgotos/microbiologia
7.
Environ Pollut ; 295: 118684, 2022 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-34921944

RESUMO

The widespread presence and persistence of perfluorooctane sulfonate (PFOS) in wastewater treatment plants, as well as its toxicity and bioaccumulation potential, necessitates the investigation on their impact on bioreactor performance. A 48-day exposure test was adopted to study the effects of low (10 µg L-1) and high (1000 µg L-1) PFOS concentrations in a sequencing batch reactor on the performance, composition, and microbial community of activated sludge. The results suggested that adding PFOS at low and high concentrations lowered the removal efficiency of total nitrogen by 22.48% (p < 0.01) and 16.30% (p < 0.01) respectively, while enhanced that of total phosphorus by 1.87% (p > 0.05) and 7.07% (p < 0.05) respectively, compared with the control group. The addition of PFOS also led to the deterioration of activated sludge dewatering performance. Composition and spectroscopic measurements revealed that the PFOS dosage changed the composition of the activated sludge. Furthermore, the PFOS altered the structure and function of the activated sludge microbial community as well as key enzyme activities.


Assuntos
Ácidos Alcanossulfônicos , Fluorocarbonos , Microbiota , Ácidos Alcanossulfônicos/toxicidade , Fluorocarbonos/toxicidade , Esgotos
8.
Environ Pollut ; 279: 116904, 2021 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-33765504

RESUMO

Here we investigated the acute effects (12 h exposure) of three polystyrene nanoplastics (PS NPs, including PS, PS-COOH and PS-NH2) on extracellular polymeric substance (EPS) composition of activated sludge. Three PS NPs exhibited the significant inhibition in total EPS and protein (PRO) production. The functional groups involved in the interactions between PS NPs and EPS were C-(C, H), and those between PS-NH2 NPs and EPS were CO and O-C-O. In addition, the dewaterability of activated sludge were optimized by three PS NPs, especially PS-NH2 NPs. Three PS NPs caused nonnegligible cellular oxidative stress and cell membrane damage in activated sludge (PS NPs exposure concentration: 100 mg/L). Among them, the cell membrane damage caused by PS-NH2 was the most significant. Overall, the degree of influence on EPS and cytotoxicity of activated sludge varies with the surface functional groups of PS NPs.


Assuntos
Poliestirenos , Esgotos , Matriz Extracelular de Substâncias Poliméricas , Microplásticos
9.
Sci Total Environ ; 758: 143633, 2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33223161

RESUMO

The source, distribution, migration, and fate of microplastics (MPs) in aquatic and terrestrial ecosystems have received much attention. However, the relevant reports in wetland ecosystems, the boundary area between water and land, are still rare. Where are the sources and sinks of MPs in the wetland? The latest researches have shown that the sources of MPs in wetlands include sewage discharge, surface runoff, and plastic wastes from aquaculture. Fibers and fragments are the most common shapes, and PE, PP, PS can be detected in water or sediment matrices, and biota of wetlands. The distribution is affected by hydrodynamic conditions, sediment properties, and vegetation coverage. Factors affecting the vertical migration of MPs include their own physical and chemical properties, the combination of substances that accelerate deposition (mineral adsorption and biological flocculation), and resuspension. Minerals tend to adsorb negatively charged MPs while algae aggregates have a preference for positively charged MPs. The wetlands vegetation can trap MPs and affect their migration. In water matrices, MPs are ingested by organisms and integrated into sediments, which makes them seem undetectable in the wetland ecosystem. Photodegradation and microbial degradation can further reduce the MPs in size. Although recent research has increased, we are still searching for a methodological harmonization of the detection practices and exploring the migration rules and fate patterns of MPs. Our work is the first comprehensive review of the source, distribution, migration, and fate of MPs in wetland ecosystems. It reveals the uniqueness of wetland habitat in the research of MPs and indicates the potential of wetlands acting as sources or sinks for MPs.

10.
Sci Total Environ ; 763: 143029, 2021 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-33129526

RESUMO

Plants are vital components of the nitrogen (N) cycling in the riparian zones. Understanding of N uptake strategies of riparian plants, including N sources and preference in N forms (ammonium (NH4+) vs. nitrate (NO3-)), is essential to advance our knowledge on the role that plants play in regulating nutrient biogeochemical cyclings in the riparian areas. In this study, stable N isotopes (δ15N) of three riparian plants, including Acorus calamus, Canna indica and Phragmites australis, and the δ15N of NH4+ and NO3- in different sources were measured during the plant growing season (June-September) in the Taihu Lake Basin. The dissolved inorganic N (DIN) from river water, groundwater, rainwater and soil were considered as the major N sources for plants in the riparian ecosystem. Our results indicated that soil was the largest source for plant N nutrition, with significantly different (P < 0.05) contributions from soil observed among plant species (80.5 ± 4.1, 73.9 ± 2.8 and 58.7 ± 6.1% for A. calamus, C. indica, and P. australis, respectively). Meanwhile, complex water networks, shallow water tables, and high DIN content in rainwater lead to nonignorable N contributions from river water, groundwater and rainwater to plants. Groundwater contributed more percentage of N to P. australis (12.8 ± 3.2%) than A. calamus (6.1 ± 1.9%) and C. indica (8.0 ± 1.5%), which is likely attributed to the deeper roots of P. australis. All plants showed similar N preference for NO3- during the growing season. External environmental conditions and plant characteristics and adaption to more abundant soil NO3- content are possible explanations. Our research could provide important information for vegetation selections during the process of riparian ecological restoration. Reasonable choice of vegetation is essential to plant growth and water quality management, especially in agricultural watersheds where N concentrations are relatively high in agricultural runoff due to the wide uses of N fertilizers.


Assuntos
Compostos de Amônio , Poluentes Químicos da Água , China , Ecossistema , Monitoramento Ambiental , Isótopos , Lagos , Nitratos/análise , Nitrogênio , Estações do Ano , Poluentes Químicos da Água/análise
11.
J Hazard Mater ; 398: 123030, 2020 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-32492616

RESUMO

The effect of nanomaterials aging, namely the transformation of comprehensive characteristics after experiencing real or complex environmental behaviors, on their ecotoxicology is still lacking. Moreover, the mechanisms by which NPs influence biological phosphorus (P) removal during sewage treatment require further elucidation. Therefore, we used both pristine and aged anatase (TiO2-A) and rutile (TiO2-R) NPs to investigate the mechanisms by which NPs affect P removal in a SBR. At 0.1 mg/L, the four types of NPs (pristine and aged) had no significant effect on sludge purification after acute (72-h) exposure under simulated sunlight. However, at 50 mg/L-regardless of the crystalline phase of the NPs-SOP and COD removal efficiency dropped steeply to approximately 42.2-82.4 % (p < 0.05) and 69.8-83.3 % (p < 0.05), respectively, especially in the pristine TiO2-NPs groups because of decrease of richness and diversity of genus level of PAOs and enzyme activity of both PPK and PPX, and the sluggish transformation of PHA and glycogen. Aging reduced the ability of NPs toxicity. The toxicity mechanisms of TiO2-NPs included lipid peroxidation and contact damage, or leakage from bacterial cytoplasmic membrane, which are closely related to photooxidation capacity and aqueous solution stability-i.e., nanoscale effects-and the impacts of aging or inclusion.


Assuntos
Nanopartículas Metálicas , Nanopartículas , Nanopartículas/toxicidade , Fósforo/toxicidade , Esgotos , Titânio/toxicidade
12.
Water Res ; 182: 115953, 2020 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-32559664

RESUMO

Most of the current studies on the toxicology of pristine nanoparticles (NPs) are environmentally irrelevant, because their ''aging'' process accompanied by the physicochemical transformation is inevitable in the environment. Considering aging phenomenon will gain a better understanding of the toxicity and fate of NPs in the environment. Here, we focused on the physicochemical transformation of anatase-NPs (TiO2-A) and rutile-NPs (TiO2-R) after 90 days of aging and investigated the responses of freshwater biofilm formation to the stress changes of naturally aged TiO2-NPs (aTiO2-NPs). We found that after aging, the TiO2-NPs underwent sophisticated physicochemical transformations in the original morphology and microstructure owing to organic and crystal salts inclusions, such as energy band changes and the formation of Ti3+ on the NPs surfaces. These comprehensive transformations increased the stability of NPs in the exposed suspension. However, the physicochemical transformations were crystal-forms-dependent, and aging did not change the crystal structure and crystallinity. Interestingly, compared to pristine NPs, aTiO2-NPs showed much lower cytotoxicity and had the weaker ability to promote or inhibit the biofilm formation (p < 0.05) owing to the passivation of photoactivity caused by the comprehensive effect of the inclusions, especially for aTiO2-A. Regardless of aging or not of crystal forms, responses of biofilm formation were exposure-concentration-dependent, namely low concentration promotion (0.1 mg/L) and high concentration inhibition (10 mg/L), e.g., role transition of the pioneers (algae or bacteria) in initial colonization, extracellular polymeric substances (EPS) secretion and compositions of development stages with polysaccharide (PS)-rich and protein (PRO)-rich stages, and biomass and cell activity at different depths of mature biofilms. The reactive oxygen species (ROS) induced by TiO2-NPs showed typical hormesis. The changing trends of the autoinducers (c-di-GMP and quorum sensing signals including AHL and AI-2) were highly consistent with the growth stages of biofilms and were stimulated or suppressed by TiO2-NPs. The NPs crystal-dependently changed the microorganism community structures, while the UPGMA clustering of bacteria was based on the growth stages of the biofilms. The toxic mechanisms revealed that photoactivity and nanoscale retention of particles are the main reasons for the differences in the ecological stress capacity of four kinds of TiO2-NPs. Aging reduced characteristic differences of two pristine NPs and even reversed their relative stresses levels (p > 0.05). However, the toxicity of high-concentration aTiO2-NPs (10 mg/L) remained serious in a water environment. This study provides a better understanding for the water environmental risks evaluation and policy control of nanoparticles, that is, the effect of time aging has to be considered.


Assuntos
Nanopartículas , Titânio , Biofilmes , Água Doce
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...