Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Inorg Chem ; 63(5): 2418-2430, 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38264973

RESUMO

Uranyl cation, as an emerging photocatalyst, has been successfully applied to synthetic chemistry in recent years and displayed remarkable catalytic ability under visible light. However, the molecular-level reaction mechanisms of uranyl photocatalysis are unclear. Here, we explore the mechanism of the stepwise benzylic C-H oxygenation of typical alkyl-substituted aromatics (i.e., toluene, ethylbenzene, and cumene) via uranyl photocatalysis using theoretical and experimental methods. Theoretical calculation results show that the most favorable reaction path for uranyl photocatalytic oxidation is as follows: first, hydrogen atom transfer (HAT) from the benzyl position to form a carbon radical ([R•]), then oxygen addition ([R•] + O2 → [ROO•]), then radical-radical combination ([ROO•] + [R•] → [ROOR] → 2[RO•]), and eventually [RO•] reduction to produce alcohols, of which 2° alcohol would further be oxidized to ketones and 1° would be stepwise-oxygenated to acids. The results of the designed verification experiments and the capture of reactive intermediates were consistent with those of theoretical calculations and the previously reported research that the active benzylic C-H would be stepwise-oxygenated in the presence of uranyl. This work deepens our understanding of the HAT mechanism of uranyl photocatalysis and provides important theoretical support for the relevant application of uranyl photocatalysts in organic transformation.

2.
J Org Chem ; 86(21): 15413-15422, 2021 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-34664499

RESUMO

Herein, the synthesis of (Z)-α,ß-unsaturated nitriles by a sequential hydroformylation/Knoevenagel reaction has been first developed. A variety of crude α-olefins from Fischer-Tropsch synthesis, internal and special olefins, as well as alkynes could be transformed into value-added alkenyl nitriles (39 examples) up to 90% yield. Remarkably, compared with commonly used tedious multistep reactions, the one-pot protocol features cheap and easily available raw materials, excellent chemo-, regio-, and stereoselectivity, very mild reaction conditions, and easy scale-up production.

3.
Org Lett ; 23(15): 6067-6072, 2021 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-34286992

RESUMO

The hydroformylation of terminal arylalkynes and enynes offers a straightforward synthetic route to the valuable (poly)enals. However, the hydroformylation of terminal alkynes has remained a long-standing challenge. Herein, an efficient and selective Rh-catalyzed hydroformylation of terminal arylalkynes and conjugated enynes has been achieved by using a new stable biphosphoramidite ligand with strong π-acceptor capacity, which affords various important E-(poly)enals in good yields with excellent chemo- and regioselectivity at low temperatures and low syngas pressures.

4.
J Am Chem Soc ; 129(30): 9401-9, 2007 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-17616130

RESUMO

Carbon nanotubes (CNTs)-based composites have attracted significant research interest in recent years, owing to their important applications in various technological fields. In this investigation, we describe a general approach to make CNTs-based nanocomposites via self-assembly. The method allows one to prepare binary composites as well as complex systems such as ternary or even quaternary composites where nanoparticles of active phases (e.g., metals and metal oxides) are used as primary building blocks. Six different kinds of binary, ternary, and quaternary nanocomposites, TiO2/CNTs, Co3O4/CNTs, Au/CNTs, Au/TiO2/CNTs, TiO2/Co3O4/CNTs, and Co/CoO/Co3O4/CNTs, have been reported herein in order to draw common features for various assembly schemes. To understand the interconnectivity between the active phases and CNTs, we have devised a range of experiments and examined the resultant samples with many instrumental techniques. On the basis of this work, we demonstrate that highly complex inorganic-organic nanohybrids with good controls in particle shape, size, and distribution can be fabricated from presynthesized nanobuilding units. Concerning their workability, we further show that self-assembled TiO2/CNTs are sufficiently robust and the electrochemical performance of TiO2 is significantly enhanced when it is used as a cathode material in Li-battery application.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...