Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Nano Lett ; 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38949123

RESUMO

The controlled vapor-phase synthesis of two-dimensional (2D) transition metal dichalcogenides (TMDs) is essential for functional applications. While chemical vapor deposition (CVD) techniques have been successful for transition metal sulfides, extending these methods to selenides and tellurides often faces challenges due to uncertain roles of hydrogen (H2) in their synthesis. Using CVD growth of MoSe2 as an example, this study illustrates the role of a H2-free environment during temperature ramping in suppressing the reduction of MoO3, which promotes effective vaporization and selenization of the Mo precursor to form MoSe2 monolayers with excellent crystal quality. As-synthesized MoSe2 monolayer-based field-effect transistors show excellent carrier mobility of up to 20.9 cm2/(V·s) with an on-off ratio of 7 × 107. This approach can be extended to other TMDs, such as WSe2, MoTe2, and MoSe2/WSe2 in-plane heterostructures. Our work provides a rational and facile approach to reproducibly synthesize high-quality TMD monolayers, facilitating their translation from laboratory to manufacturing.

2.
Nano Lett ; 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38885458

RESUMO

The metal-semiconductor interface fabricated by conventional methods often suffers from contamination, degrading transport performance. Herein, we propose a one-pot chemical vapor deposition (CVD) process to create a two-dimensional (2D) MoO2-MoSe2 heterostructure by growing MoO2 seeds under a hydrogen environment, followed by depositing MoSe2 on the surface and periphery. The ultraclean interface is verified by cross-sectional scanning transmission electron microscopy and photoluminescence. Along with the high work function of semimetallic MoO2 (Ef = -5.6 eV), a high-rectification Schottky diode is fabricated based on this heterostructure. Furthermore, the Schottky diode exhibits an excellent photovoltaic effect with a high open-circuit voltage of 0.26 eV and ultrafast photoresponse, owing to the naturally formed metal-semiconductor contact with suppressed pinning effect. Our method paves the way for the fabrication of an ultraclean 2D metal-semiconductor interface, without defects or contamination, offering promising prospects for future nanoelectronics.

4.
Nano Converg ; 10(1): 37, 2023 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-37561270

RESUMO

With a high specific capacity and low electrochemical potentials, metal anode batteries that use lithium, sodium and zinc metal anodes, have gained great research interest in recent years, as a potential candidate for high-energy-density storage systems. However, the uncontainable dendrite growth during the repeated charging process, deteriorates the battery performance, reduces the battery life and more importantly, raises safety concerns. With their unique properties, two-dimensional (2D) materials, can be used to modify various components in metal batteries, eventually mitigating the dendrite growth, enhancing the cycling stability and rate capability, thus leading to safe and robust metal anodes. In this paper, we review the recent advances of 2D materials and summarize current research progress of using 2D materials in the applications of (i) anode design, (ii) separator engineering, and (iii) electrolyte modifications by guiding metal ion nucleation, increasing ion conductivity, homogenizing the electric field and ion flux, and enhancing the mechanical strength for safe metal anodes. The 2D material modifications provide the ultimate solution for obtaining dendrite-free metal anodes, realizes the high energy storage application, and indicates the importance of 2D materials development. Finally, in-depth understandings of subsequent metal growth are lacking due to research limitations, while more advanced characterizations are welcome for investigating the metal deposition mechanism. The more facile and simplified preparation of 2D materials possess great prospects in high energy density metal anode batteries, and thus fulfils the development of EVs.

5.
Small ; 18(29): e2202229, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35736629

RESUMO

Atomically thin monolayer semiconducting transition metal dichalcogenides (TMDs), exhibiting direct band gap and strong light-matter interaction, are promising for optoelectronic devices. However, an efficient band alignment engineering method is required to further broaden their practical applications as versatile optoelectronics. In this work, the band alignment of two vertically stacked monolayer TMDs using the chemical vapor deposition (CVD) method is effectively tuned by two strategies: 1) formulating the compositions of MoS2(1-x) Se2x alloys, and 2) varying the twist angles of the stacked heterobilayer structures. Photoluminescence (PL) results combined with density functional theory (DFT) calculation show that by changing the alloy composition, a continuously tunable band alignment and a transition of type II-type I-type II band alignment of TMD heterobilayer is achieved. Moreover, only at moderate (10°-50°) twist angles, a PL enhancement of 28%-110% caused by the type I alignment is observed, indicating that the twist angle is coupled with the global band structure of heterobilayer. A heterojunction device made with MoS0.76 Se1.24 /WS2 of 14° displays a significantly high photoresponsivity (55.9 A W-1 ), large detectivity (1.07 × 1010 Jones), and high external quantum efficiency (135%). These findings provide engineering tools for heterostructure design for their application in optoelectronic devices.

6.
ACS Mater Au ; 2(6): 665-685, 2022 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-36855548

RESUMO

In recent years, transition metal dichalcogenide (TMD)-based electronics have experienced a prosperous stage of development, and some considerable applications include field-effect transistors, photodetectors, and light-emitting diodes. Chemical vapor deposition (CVD), a typical bottom-up approach for preparing 2D materials, is widely used to synthesize large-area 2D TMD films and is a promising method for mass production to implement them for practical applications. In this review, we investigate recent progress in controlled CVD growth of 2D TMDs, aiming for controlled nucleation and orientation, using various CVD strategies such as choice of precursors or substrates, process optimization, and system engineering. We then survey different patterning methods, such as surface patterning, metal precursor patterning, and postgrowth sulfurization/selenization/tellurization, to mass produce heterostructures for device applications. With these strategies, various well-designed architectures, such as wafer-scale single crystals, vertical and lateral heterostructures, patterned structures, and arrays, are achieved. In addition, we further discuss various electronics made from CVD-grown TMDs to demonstrate the diverse application scenarios. Finally, perspectives regarding the current challenges of controlled CVD growth of 2D TMDs are also suggested.

7.
Adv Funct Mater ; 31(24): 2101195, 2021 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-34149339

RESUMO

The prevalence of COVID-19 has caused global dysfunction in terms of public health, sustainability, and socio-economy. While vaccination shows potential in containing the spread, the development of surfaces that effectively reduces virus transmission and infectivity is also imperative, especially amid the early stage of the pandemic. However, most virucidal surfaces are operated under harsh conditions, making them impractical or potentially unsafe for long-term use. Here, it is reported that laser-induced graphene (LIG) without any metal additives shows marvelous antiviral capacities for coronavirus. Under low solar irradiation, the virucidal efficacy of the hydrophobic LIG (HLIG) against HCoV-OC43 and HCoV-229E can achieve 97.5% and 95%, respectively. The photothermal effect and the hydrophobicity of the HLIG synergistically contribute to the superior inactivation capacity. The stable antiviral performance of HLIG enables its multiple uses, showing advantages in energy saving and environmental protection. This work discloses a potential method for antiviral applications and has implications for the future development of antiviral materials.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...