Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 126
Filtrar
1.
World J Gastrointest Oncol ; 16(5): 1773-1786, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38764839

RESUMO

BACKGROUND: The TRIANGLE operation involves the removal of all tissues within the triangle bounded by the portal vein-superior mesenteric vein, celiac axis-common hepatic artery, and superior mesenteric artery to improve patient prognosis. Although previously promising in patients with locally advanced pancreatic ductal adenocarcinoma (PDAC), data are limited regarding the long-term oncological outcomes of the TRIANGLE operation among resectable PDAC patients undergoing pancreaticoduodenectomy (PD). AIM: To evaluate the safety of the TRIANGLE operation during PD and the prognosis in patients with resectable PDAC. METHODS: This retrospective cohort study included patients who underwent PD for pancreatic head cancer between January 2017 and April 2023, with or without the TRIANGLE operation. Patients were divided into the PDTRIANGLE and PDnon-TRIANGLE groups. Surgical and survival outcomes were compared between the two groups. Adequate adjuvant chemotherapy was defined as adjuvant chemotherapy ≥ 6 months. RESULTS: The PDTRIANGLE and PDnon-TRIANGLE groups included 52 and 55 patients, respectively. There were no significant differences in the baseline characteristics or perioperative indexes between the two groups. Furthermore, the recurrence rate was lower in the PDTRIANGLE group than in the PDnon-TRIANGLE group (48.1% vs 81.8%, P < 0.001), and the local recurrence rate of PDAC decreased from 37.8% to 16.0%. Multivariate Cox regression analysis revealed that PDTRIANGLE (HR = 0.424; 95%CI: 0.256-0.702; P = 0.001), adequate adjuvant chemotherapy ≥ 6 months (HR = 0.370; 95%CI: 0.222-0.618; P < 0.001) and margin status (HR = 2.255; 95%CI: 1.252-4.064; P = 0.007) were found to be independent factors for the recurrence rate. CONCLUSION: The TRIANGLE operation is safe for PDAC patients undergoing PD. Moreover, it reduces the local recurrence rate of PDAC and may improve survival in patients who receive adequate adjuvant chemotherapy.

2.
Parasit Vectors ; 17(1): 142, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38500196

RESUMO

BACKGROUND: The protozoan parasite Toxoplasma gondii encodes dozens of phosphatases, among which a plant-like phosphatase absent from mammalian genomes named PPKL, which is involved in regulating brassinosteroid signaling in Arabidopsis, was identified in the genome. Among the Apicomplexa parasites, T. gondii is an important and representative pathogen in humans and animals. PPKL was previously identified to modulate the apical integrity and morphology of the ookinetes and parasite motility and transmission in another important parasite, Plasmodium falciparum. However, the exact function of PPKL in the asexual stages of T. gondii remains unknown. METHODS: The plant auxin-inducible degron (AID) system was applied to dissect the phenotypes of PPKL in T. gondii. We first analyzed the phenotypes of the AID parasites at an induction time of 24 h, by staining of different organelles using their corresponding markers. These analyses were further conducted for the parasites grown in auxin for 6 and 12 h using a quantitative approach and for the type II strain ME49 of AID parasites. To further understand the phenotypes, the potential protein interactions were analyzed using a proximity biotin labeling approach. The essential role of PPKL in parasite replication was revealed. RESULTS: PPKL is localized in the apical region and nucleus and partially distributed in the cytoplasm of the parasite. The phenotyping of PPKL showed its essentiality for parasite replication and morphology. Further dissections demonstrate that PPKL is required for the maturation of daughter parasites in the mother cells, resulting in multiple nuclei in a single parasite. The phenotype of the daughter parasites and parasite morphology were observed in another type of T. gondii strain ME49. The substantial defect in parasite replication and morphology could be rescued by genetic complementation, thus supporting its essential function for PPKL in the formation of parasites. The protein interaction analysis showed the potential interaction of PPKL with diverse proteins, thus explaining the importance of PPKL in the parasite. CONCLUSIONS: PPKL plays an important role in the formation of daughter parasites, revealing its subtle involvement in the proper maturation of the daughter parasites during division. Our detailed analysis also demonstrated that depletion of PPKL resulted in elongated tubulin fibers in the parasites. The important roles in the parasites are potentially attributed to the protein interaction mediated by kelch domains on the protein. Taken together, these findings contribute to our understanding of a key phosphatase involved in parasite replication, suggesting the potential of this phosphatase as a pharmaceutic target.


Assuntos
Parasitos , Toxoplasma , Humanos , Animais , Toxoplasma/fisiologia , Proteínas de Plantas/metabolismo , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Fosfoproteínas Fosfatases/metabolismo , Ácidos Indolacéticos/metabolismo , Mamíferos
3.
J Biol Chem ; 299(12): 105481, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38041932

RESUMO

Singlet oxygen (1O2) has a very short half-life of 10-5 s; however, it is a strong oxidant that causes growth arrest and necrotic lesions on plants. Its signaling pathway remains largely unknown. The Arabidopsis flu (fluorescent) mutant accumulates a high level of 1O2 and shows drastic changes in nuclear gene expression. Only two plastid proteins, EX1 (executer 1) and EX2 (executer 2), have been identified in the singlet oxygen signaling. Here, we found that the transcription factor abscisic acid insensitive 4 (ABI4) binds the promoters of genes responsive to 1O2-signals. Inactivation of the ABI4 protein in the flu/abi4 double mutant was sufficient to compromise the changes of almost all 1O2-responsive-genes and rescued the lethal phenotype of flu grown under light/dark cycles, similar to the flu/ex1/ex2 triple mutant. In addition to cell death, we reported for the first time that 1O2 also induces cell wall thickening and stomatal development defect. Contrastingly, no apparent growth arrest was observed for the flu mutant under normal light/dim light cycles, but the cell wall thickening (doubled) and stomatal density reduction (by two-thirds) still occurred. These results offer a new idea for breeding stress tolerant plants.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Ácido Abscísico/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Parede Celular/metabolismo , Regulação da Expressão Gênica de Plantas , Luz , Oxigênio Singlete/metabolismo , Transcriptoma , Estômatos de Plantas/metabolismo
4.
ACS Nano ; 17(20): 19853-19864, 2023 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-37812400

RESUMO

Due to the immunosuppressive tumor microenvironment (TME) and weak radiation absorption, the immune response triggered by radiation therapy (RT) is limited. Herein, a core-shell nanosensitizer UiO@MnS (denoted as UM) was genuinely constructed for the amplification of RT efficacy and induction of immunogenicity via integrating MnS-reprogrammed TME with Hf-based UiO-sensitized RT. The acid-sensitive MnS would produce H2S under acidic TME to improve oxygenation through inhibition mitochondrial respiration and reducing metabolic oxygen consumption, leading to decreased HIF-1α expression and enhanced radiosensitization. In addition, the generated H2S inhibited the catalase activity to increase the H2O2 level, which subsequently enhanced the Mn2+-mediated Fenton-like reaction, resulting in G2/M cell cycle arrest to improve the cellular sensitivity for radiation. This impressive tumor oxygenation, cell cycle arrest, and radiosensitization procedure boosted RT efficacy and resulted in strong antitumor immunogenicity. Taken together, combining the immunosuppressive TME modulation with a sensitizing radiation strategy shows great promise for magnifying immunogenic RT outputs.


Assuntos
Peróxido de Hidrogênio , Neoplasias , Humanos , Microambiente Tumoral , Absorção de Radiação , Ciclo Celular , Divisão Celular , Imunossupressores , Neoplasias/radioterapia , Linhagem Celular Tumoral
5.
Sci Rep ; 13(1): 15946, 2023 09 24.
Artigo em Inglês | MEDLINE | ID: mdl-37743377

RESUMO

The high frequency, stable somatic embryo system of tea has still not been established due to the limitations of its own characteristics and therefore severely restricts the genetic research and breeding process of tea plants. In this study, the transcriptome was used to illustrate the mechanisms of gene expression regulation in the somatic embryogenesis of tea plants. The number of DEGs for the (IS intermediate stage)_PS (preliminary stage), ES (embryoid stage)_IS and ES_PS stages were 109, 2848 and 1697, respectively. The enrichment analysis showed that carbohydrate metabolic processes were considerably enriched at the ES_IS stage and performed a key role in somatic embryogenesis, while enhanced light capture in photosystem I could provide the material basis for carbohydrates. The pathway analysis showed that the enriched pathways in IS_PS process were far less than those in ES_IS or ES_PS, and the photosynthesis and photosynthetic antenna protein pathway of DEGs in ES_IS or ES_PS stage were notably enriched and up-regulated. The key photosynthesis and photosynthesis antenna protein pathways and the Lhcb1 gene were discovered in tea plants somatic embryogenesis. These results were of great significance to clarify the mechanism of somatic embryogenesis and the breeding research of tea plants.


Assuntos
Camellia sinensis , Camellia sinensis/genética , Melhoramento Vegetal , Perfilação da Expressão Gênica , Fotossíntese/genética , Chá
6.
mBio ; 14(4): e0130923, 2023 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-37548452

RESUMO

In the apicomplexans, endocytosed cargos (e.g., hemoglobin) are trafficked to a specialized organelle for digestion. This follows a unique endocytotic process at the micropore/cytostome in these parasites. However, the mechanism underlying endocytic trafficking remains elusive, due to the repurposing of classical endocytic proteins for the biogenesis of apical organelles. To resolve this issue, we have exploited the genetic tractability of the model apicomplexan Toxoplasma gondii, which ingests host cytosolic materials (e.g., green fluorescent protein[GFP]). We determined an association between protein prenylation and endocytic trafficking, and using an alkyne-labeled click chemistry approach, the prenylated proteome was characterized. Genome editing, using clustered regularly interspaced short palindromic repaet/CRISPR-associated nuclease 9 (CRISPR/Cas9), was efficiently utilized to generate genetically modified lines for the functional screening of 23 prenylated candidates. This identified four of these proteins that regulate the trafficking of endocytosed GFP vesicles. Among these proteins, Rab1B and YKT6.1 are highly conserved but are non-classical endocytic proteins in eukaryotes. Confocal imaging analysis showed that Rab1B and Ras are substantially localized to both the trans-Golgi network and the endosome-like compartments in the parasite. Conditional knockdown of Rab1B caused a rapid defect in secretory trafficking to the rhoptry bulb, suggesting a trafficking intersection role for the key regulator Rab1B. Further experiments confirmed a critical role for protein prenylation in regulating the stability/activity of these proteins (i.e., Rab1B and YKT6.1) in the parasite. Our findings define the molecular basis of endocytic trafficking and reveal a potential intersection function of Rab1B on membrane trafficking in T. gondii. This might extend to other related protists, including the malarial parasites. IMPORTANCE The protozoan Toxoplasma gondii establishes a permissive niche, in host cells, that allows parasites to acquire large molecules such as proteins. Numerous studies have demonstrated that the parasite repurposes the classical endocytic components for secretory sorting to the apical organelles, leaving the question of endocytic transport to the lysosome-like compartment unclear. Recent studies indicated that endocytic trafficking is likely to associate with protein prenylation in malarial parasites. This information promoted us to examine this association in the model apicomplexan T. gondii and to identify the key components of the prenylated proteome that are involved. By exploiting the genetic tractability of T. gondii and a host GFP acquisition assay, we reveal four non-classical endocytic proteins that regulate the transport of endocytosed cargos (e.g., GFP) in T. gondii. Thus, we extend the principle that protein prenylation regulates endocytic trafficking and elucidate the process of non-classical endocytosis in T. gondii and potentially in other related protists.


Assuntos
Toxoplasma , Toxoplasma/metabolismo , Proteoma/metabolismo , Proteínas de Protozoários/genética , Transporte Proteico , Endossomos/metabolismo , Proteínas de Fluorescência Verde/metabolismo
7.
PLoS One ; 18(5): e0284859, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37200309

RESUMO

BACKGROUND: The impact of marijuana on the general population is largely unknown. The present study aimed to assess the association between marijuana use and liver steatosis and fibrosis in the general United States population utilizing data from the National Health and Nutrition Examination Survey (NHANES). METHODS: This cross-sectional study was performed with data from the 2017-2018 cycle of NHANES. The target population comprised adults in the NHANES database with reliable vibration controlled transient elastography (VCTE) results. The median values of the controlled attenuation parameter (CAP) and liver stiffness measurement (LSM) were used to evaluate liver steatosis and fibrosis, respectively. After adjusting for relevant confounders, a logistic regression analysis was used to assess the association between marijuana use and liver steatosis and fibrosis. RESULTS: A total of 2622 participants were included in this study. The proportions of never marijuana users, past users, and current users were 45.9%, 35.0%, and 19.1%, respectively. Compared to never marijuana users, past and current users had a lower prevalence of liver steatosis (P = 0.184 and P = 0.048, respectively). In the alcohol intake-adjusted model, current marijuana use was an independent predictor of a low prevalence of liver steatosis in people with non-heavy alcohol intake. The association between marijuana use and liver fibrosis was not significant in univariate and multivariate regression. CONCLUSION: In this nationally representative sample, current marijuana use is inversely associated with steatosis. The pathophysiology is unclear and needs further study. No significant association was established between marijuana use and liver fibrosis, irrespective of past or current use.


Assuntos
Técnicas de Imagem por Elasticidade , Fígado Gorduroso , Uso da Maconha , Hepatopatia Gordurosa não Alcoólica , Transtornos Relacionados ao Uso de Substâncias , Adulto , Humanos , Estados Unidos/epidemiologia , Técnicas de Imagem por Elasticidade/métodos , Estudos Transversais , Inquéritos Nutricionais , Fígado Gorduroso/diagnóstico por imagem , Fígado Gorduroso/epidemiologia , Fígado Gorduroso/complicações , Cirrose Hepática/diagnóstico por imagem , Cirrose Hepática/epidemiologia , Cirrose Hepática/etiologia , Transtornos Relacionados ao Uso de Substâncias/complicações , Hepatopatia Gordurosa não Alcoólica/diagnóstico por imagem , Hepatopatia Gordurosa não Alcoólica/epidemiologia , Hepatopatia Gordurosa não Alcoólica/complicações , Fígado/patologia
8.
STAR Protoc ; 4(2): 102169, 2023 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-36924505

RESUMO

Cerebral organoids represent an optimal experimental system for studying human cortical development, evolution, physiology, function, and disease mechanisms. Here, we describe a simple protocol for the differentiation of human pluripotent stem cells (hPSCs) into cerebral organoids. We describe steps for hPSC maintenance, neural induction of embryoid bodies, and patterning of cerebral organoids. We also detail a process for the phenotypic assay of each neural-tube-like area in hPSC-derived cerebral organoids. For complete details on the use and execution of this protocol, please refer to Tang et al. (2021).1.

9.
Signal Transduct Target Ther ; 7(1): 168, 2022 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-35610212

RESUMO

Organoids are three-dimensional (3D) miniature structures cultured in vitro produced from either human pluripotent stem cells (hPSCs) or adult stem cells (AdSCs) derived from healthy individuals or patients that recapitulate the cellular heterogeneity, structure, and functions of human organs. The advent of human 3D organoid systems is now possible to allow remarkably detailed observation of stem cell morphogens, maintenance and differentiation resemble primary tissues, enhancing the potential to study both human physiology and developmental stage. As they are similar to their original organs and carry human genetic information, organoids derived from patient hold great promise for biomedical research and preclinical drug testing and is currently used for personalized, regenerative medicine, gene repair and transplantation therapy. In recent decades, researchers have succeeded in generating various types of organoids mimicking in vivo organs. Herein, we provide an update on current in vitro differentiation technologies of brain, retinal, kidney, liver, lung, gastrointestinal, cardiac, vascularized and multi-lineage organoids, discuss the differences between PSC- and AdSC-derived organoids, summarize the potential applications of stem cell-derived organoids systems in the laboratory and clinic, and outline the current challenges for the application of organoids, which would deepen the understanding of mechanisms of human development and enhance further utility of organoids in basic research and clinical studies.


Assuntos
Células-Tronco Adultas , Células-Tronco Pluripotentes , Adulto , Diferenciação Celular/genética , Humanos , Organoides/metabolismo , Células-Tronco Pluripotentes/fisiologia , Medicina Regenerativa/métodos
10.
Biochim Biophys Acta Mol Basis Dis ; 1868(6): 166388, 2022 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-35301086

RESUMO

Down syndrome (DS) is caused by trisomy 21, and it is characterized by developmental brain disorders and neurological dysfunction. Clinical studies and basic research have revealed that defects in mitochondrial function contribute to the pathogenesis of DS. However, the underlying mechanisms of mitochondrial dysfunction in DS remain unclear. In this study, we first generated GABAergic interneurons and medial ganglionic eminence (MGE) organoids from DS patients and control induced pluripotent stem cells. The mitochondria were abnormally clustered in the perinuclear region of GABA neurons and cell in MGE organoids from DS patients, which exhibited impaired mitochondrial function as assessed by seahorse oxidative phosphorylation assay. Inhibition of the DSCAM-PAK1 pathway by gene editing or treatment with a small molecule corrected mitochondrial perinuclear aggregation in cells from DS patients. Therefore, our study provides insight into the potential mechanism of mitochondrial dysfunction in DS.


Assuntos
Síndrome de Down , Células-Tronco Pluripotentes Induzidas , Síndrome de Down/genética , Síndrome de Down/metabolismo , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Interneurônios , Mitocôndrias/metabolismo , Organoides/metabolismo
11.
Chemosphere ; 292: 133466, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34973246

RESUMO

Most hyperaccumulator plants have little economic values, and therefore have not been widely used in Cd-contaminated soils. Rape species are Cd hyperaccumulators with high economic values. Black mustard seed (Brassica juncea) has a higher accumulation ability and a higher tolerance for Cd than oilseed rape (Brassica napus), but its biomass is relatively low and its geographical distribution is limited. However, it is unknown why B. juncea (Bj) is more tolerant to and accumulates more Cd than B. napus (Bn). Here, we found that the differences in Cd accumulation and tolerance between the two species is mainly because Bj plants have higher levels of salicylic acid and glutamic acid than Bn plants. Exogenous salicylate and glutamate treatments enhanced Cd accumulation (salicylate + glutamate co-treatment doubled Cd accumulation level in Bn seedlings) but reduced oxidative stresses by increasing glutathione biosynthesis and activating phytochelatin-based sequestration of Cd into vacuoles. Our results provide a new idea to simultaneously improve Cd accumulation and Cd tolerance in B. napus.


Assuntos
Brassica napus , Biodegradação Ambiental , Cádmio/análise , Cádmio/toxicidade , Ácido Glutâmico , Mostardeira , Salicilatos
12.
Inorg Chem ; 60(24): 18614-18619, 2021 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-34855374

RESUMO

Neutral three-dimensional Eu3+- and Tb3+-based metal-organic frameworks (MOFs) with 4-fold interpenetration can be produced by seeding with anionic Cd2+-based MOF crystallites of identical connectivity. In the absence of these crystallites, two-dimensional networks are formed.

13.
Front Oncol ; 11: 743490, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34707991

RESUMO

OBJECTIVE: To establish a radiomics signature and a nomogram model based on enhanced CT images to predict the Ki-67 index of lung cancer. METHODS: From January 2014 to December 2018, 282 patients with lung cancer who had undergone enhanced CT scans and Ki-67 examination within 2 weeks were retrospectively enrolled and analyzed. The clinical data of the patients were collected, such as age, sex, smoking history, maximum tumor diameter and serum tumor markers. Our primary cohort was randomly divided into a training group (n=197) and a validation group (n=85) at a 7:3 ratio. A Ki-67 index ≤ 40% indicated low expression, and a Ki-67 index > 40% indicated high expression. In total, 396 radiomics features were extracted using AK software. Feature reduction and selection were performed using the lasso regression model. Logistic regression analysis was used to establish a multivariate predictive model to identify high and low Ki-67 expression in lung cancer. A nomogram integrating the radiomics score was established based on multiple logistic regression analysis. Area under the curve (AUC) was used to evaluate the prediction efficiency of the radiomics signature and nomogram. RESULTS: The AUC,sensitivity, specificity and accuracy of the radiomics signature in the training and validation groups were 0.88 (95% CI: 0.82~0.93),79.2%,84.3%,81.2% and 0.86 (95% CI: 0.78~0.94),74.6%,88.1%,79.8%, respectively. A nomogram combining radiomics features and clinical risk factors (smoking history and NSE) was developed. The AUC, sensitivity, specificity and accuracy were 0.87 (95% CI: 0.80~0.95), 75.0%, 90.2% and 83.5% in the validation group, respectively. CONCLUSION: The radiomics signature and nomogram based on enhanced CT images provide a way to predict the Ki-67 expression level in lung cancer.

14.
Chem Asian J ; 16(18): 2674-2680, 2021 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-34313020

RESUMO

Reactions of (NH4 )2 WS4 with CuCN, CuCN/1,2-bis(4-pyridyl)propane (bppa) or [Cu(MeCN)4 ]PF6 /bppa under different reaction conditions afforded a set of two- or three-dimensional W/Cu/S cluster-based coordination polymers including {[Et4 N]2 [WS4 Cu4 (µ-CN)2 (µ-I)2 ]}n (1), [WS4 Cu4 (µ-CN)2 (bppa)2 ]n (2) and {[WS4 Cu4 (bppa)4 ](PF6 )2 }n (3), respectively. Compound 2 can be readily formed from reaction of 1 with bppa under solvothermal conditions. Compounds 1 and 2 feature two-dimensional networks with a "sql" topology, while 3 possesses a two-fold interpenetrated three-dimensional net with a rare "reo" topology. Compounds 1-3 in DMF exhibited different third-order nonlinear optical responses, and they all showed a reverse saturable absorption while 2 held a strong self-focusing effect.

15.
J Clin Invest ; 131(12)2021 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-33945512

RESUMO

Down syndrome (DS), caused by trisomy of chromosome 21, occurs in 1 of every 800 live births. Early defects in cortical development likely account for the cognitive impairments in DS, although the underlying molecular mechanism remains elusive. Here, we performed histological assays and unbiased single-cell RNA-Seq (scRNA-Seq) analysis on cerebral organoids derived from 4 euploid cell lines and from induced pluripotent stem cells (iPSCs) from 3 individuals with trisomy 21 to explore cell-type-specific abnormalities associated with DS during early brain development. We found that neurogenesis was significantly affected, given the diminished proliferation and decreased expression of layer II and IV markers in cortical neurons in the subcortical regions; this may have been responsible for the reduced size of the organoids. Furthermore, suppression of the DSCAM/PAK1 pathway, which showed enhanced activity in DS, using CRISPR/Cas9, CRISPR interference (CRISPRi), or small-molecule inhibitor treatment reversed abnormal neurogenesis, thereby increasing the size of organoids derived from DS iPSCs. Our study demonstrates that 3D cortical organoids developed in vitro are a valuable model of DS and provide a direct link between dysregulation of the DSCAM/PAK1 pathway and developmental brain defects in DS.


Assuntos
Moléculas de Adesão Celular/metabolismo , Córtex Cerebral/metabolismo , Síndrome de Down/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Neurogênese , Organoides/metabolismo , Transdução de Sinais , Quinases Ativadas por p21/metabolismo , Moléculas de Adesão Celular/genética , Linhagem Celular , Síndrome de Down/genética , Humanos , Quinases Ativadas por p21/genética
16.
Front Plant Sci ; 12: 800913, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35095972

RESUMO

After nitrogen treatments, plant leaves become narrower and thicker, and the chlorophyll content increases. However, the molecular mechanisms behind these regulations remain unknown. Here, we found that the changes in leaf width and thickness were largely compromised in the shade avoidance 3 (sav3) mutant. The SAV3 gene encodes an amino-transferase in the auxin biosynthesis pathway. Thus, the crosstalk between shade and nitrogen in Arabidopsis leaf development was investigated. Both hypocotyl elongation and leaf expansion promoted by the shade treatment were reduced by the high-N treatment; high-N-induced leaf narrowing and thickening were reduced by the shade treatment; and all of these developmental changes were largely compromised in the sav3 mutant. Shade treatment promoted SAV3 expression, while high-N treatment repressed SAV3 expression, which then increased or decreased auxin accumulation in cotyledons/leaves, respectively. SAV3 also regulates chlorophyll accumulation and nitrogen assimilation and thus may function as a master switch responsive to multiple environmental stimuli.

17.
Mol Psychiatry ; 26(7): 2964-2976, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33051604

RESUMO

Numerous studies have used human pluripotent stem cell-derived cerebral organoids to elucidate the mystery of human brain development and model neurological diseases in vitro, but the potential for grafted organoid-based therapy in vivo remains unknown. Here, we optimized a culturing protocol capable of efficiently generating small human cerebral organoids. After transplantation into the mouse medial prefrontal cortex, the grafted human cerebral organoids survived and extended projections over 4.5 mm in length to basal brain regions within 1 month. The transplanted cerebral organoids generated human glutamatergic neurons that acquired electrophysiological maturity in the mouse brain. Importantly, the grafted human cerebral organoids functionally integrated into pre-existing neural circuits by forming bidirectional synaptic connections with the mouse host neurons. Furthermore, compared to control mice, the mice transplanted with cerebral organoids showed an increase in freezing time in response to auditory conditioned stimuli, suggesting the potentiation of the startle fear response. Our study showed that subcortical projections can be established by microtransplantation and may provide crucial insights into the therapeutic potential of human cerebral organoids for neurological diseases.


Assuntos
Células-Tronco Pluripotentes Induzidas , Células-Tronco Pluripotentes , Animais , Encéfalo , Diferenciação Celular , Fenômenos Eletrofisiológicos , Humanos , Camundongos , Neurônios , Organoides
18.
J Exp Clin Cancer Res ; 39(1): 260, 2020 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-33234148

RESUMO

BACKGROUND: The E6 oncoproteins of human papillomavirus (HPV) 16/18 are the critical drivers of cervical cancer (CC) progression. Extracellular vesicles (EVs) are emerging as critical mediators of cancer-tumor microenvironment (TME) communication. However, whether EVs contribute to HPV 16/18 E6-mediated impacts on CC progression remains unclear. METHODS: A series of in vitro and in vivo assays were performed to elucidate the roles and mechanism of EV-Wnt7b in HPV E6-induced CC angiogenesis. The prognostic value of serum EV-Wnt7b was determined and a predictive nomogram model was established. RESULTS: HPV 16/18 E6 upregulated Wnt7b mRNA expression in four HPV 16/18-positive CC cell lines and their EVs. In vitro and in vivo experiments demonstrated that EV-Wnt7b mRNA was transferred to and modulated human umbilical vein endothelial cells (HUVECs) toward more proliferative and proangiogenic behaviors by impacting ß-catenin signaling. Clinically, serum EV-Wnt7b levels were elevated in CC patients and significantly correlated with an aggressive phenotype. Serum EV-Wnt7b was determined to be an independent prognostic factor for CC overall survival (OS) and recurrence-free survival (RFS). Notably, we successfully established a novel predictive nomogram model using serum EV-Wnt7b, which showed good prediction of 1- and 3-year OS and RFS. CONCLUSIONS: Our results illustrate a potential crosstalk between HPV 16/18-positive CC cells and HUVECs via EVs in the TME and highlight the potential of circulating EV-Wnt7b as a novel predictive biomarker for CC prognosis.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Vesículas Extracelulares/metabolismo , Proteínas Oncogênicas Virais/metabolismo , Proteínas Repressoras/metabolismo , Neoplasias do Colo do Útero/irrigação sanguínea , Proteínas Wnt/metabolismo , beta Catenina/metabolismo , Animais , Carcinoma de Células Escamosas/irrigação sanguínea , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/patologia , Feminino , Células HeLa , Humanos , Camundongos , Camundongos Nus , Pessoa de Meia-Idade , Neovascularização Patológica/metabolismo , Neovascularização Patológica/patologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Transdução de Sinais , Regulação para Cima , Neoplasias do Colo do Útero/genética , Neoplasias do Colo do Útero/patologia , Neoplasias do Colo do Útero/virologia , Proteínas Wnt/genética
19.
Int J Mol Sci ; 21(19)2020 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-33050099

RESUMO

Nitrogen (N), phosphorus (P), and potassium (K) are three essential macro-elements for plant growth and development. Used to improve yield in agricultural production, the excessive use of chemical fertilizers often leads to increased production costs and ecological environmental pollution. Vitamins C and E are antioxidants that play an important role in alleviating abiotic stress. However, there are few studies on alleviating oxidative stress caused by macro-element deficiency. Here, we used Arabidopsis vitamin E synthesis-deficient mutant vte4 and vitamin C synthesis-deficient mutant vtc1 on which exogenous vitamin E and vitamin C, respectively, were applied at the bolting stage. In the deficiency of macro-elements, the Arabidopsis chlorophyll content decreased, malondialdehyde (MDA) content and relative electric conductivity increased, and reactive oxygen species (ROS) accumulated. The mutants vtc1 and vte4 are more severely stressed than the wild-type plants. Adding exogenous vitamin E was found to better alleviate stress than adding vitamin C. Vitamin C barely affected and vitamin E significantly inhibited the synthesis of ethylene (ETH) and jasmonic acid (JA) genes, thereby reducing the accumulation of ETH and JA that alleviated the senescence caused by macro-element deficiency at the later stage of bolting in Arabidopsis. A deficiency of macro-elements also reduced the yield and germination rate of the seeds, which were more apparent in vtc1 and vte4, and adding exogenous vitamin C and vitamin E, respectively, could restore them. This study reported, for the first time, that vitamin E is better than vitamin C in delaying seedling senescence caused by macro-element deficiency in Arabidopsis.


Assuntos
Antioxidantes/farmacologia , Arabidopsis/efeitos dos fármacos , Arabidopsis/genética , Ácido Ascórbico/farmacologia , Resistência à Doença/efeitos dos fármacos , Plântula/efeitos dos fármacos , Vitamina E/farmacologia , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Clorofila/metabolismo , Ciclopentanos/antagonistas & inibidores , Ciclopentanos/metabolismo , Etilenos/antagonistas & inibidores , Etilenos/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Malondialdeído/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Oxilipinas/antagonistas & inibidores , Oxilipinas/metabolismo , Doenças das Plantas/prevenção & controle , Folhas de Planta/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Plântula/genética , Plântula/metabolismo , Sementes/metabolismo , Transdução de Sinais/efeitos dos fármacos , Fatores de Tempo
20.
Biochem Biophys Res Commun ; 532(4): 633-639, 2020 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-32907713

RESUMO

Nitrate reductase (NR) is one of the key enzymes for plant nitrogen assimilation and root architecture remodeling. However, crosstalk between NR-mediated signaling and auxin-mediated root development in nitrogen-status responses has not been investigated in details before. In this study, root phenotype and auxin distribution in nia1/nia2 (nitrate reductase) double mutant and chl1-5 (nitrate transporter NRT1.1) mutant under different nitrogen availabilities were compared. The nia1/nia2 mutant showed very low expression levels of auxin biosynthetic/signaling genes and was insensitive to nitrogen changes. While the chl1-5 mutant showed a high NR activity with a high level of auxin in the meristematic zone and a weaker response to nitrogen changes, when compared with the wild-type plants. We firstly found that NR activity was roughly positive-correlated with the root auxin level, and there is a crosstalk between nitrate signaling and auxin signaling. The putative signaling pathways downstream of NR have been discussed.


Assuntos
Arabidopsis/enzimologia , Ácidos Indolacéticos/metabolismo , Nitrato Redutase/metabolismo , Nitrogênio/metabolismo , Arabidopsis/anatomia & histologia , Arabidopsis/genética , Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas , Mutação , Nitrato Redutase/genética , Nitrato Redutase/fisiologia , Raízes de Plantas/anatomia & histologia , Raízes de Plantas/enzimologia , Raízes de Plantas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...