Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomolecules ; 14(6)2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38927089

RESUMO

Amino acid deprivation therapy (AADT) is a novel anticancer therapy, considered nontoxic and selective. Thermophilic L-asparaginase enzymes display high stability and activity at elevated temperatures. However, they are of limited use in clinical applications because of their low substrate affinity and reduced activity under physiological conditions, which may necessitate an improved dosage, leading to side effects and greater costs. Thus, in an attempt to improve the activity of L-Asn at 37 °C, with the use of a semi-rational design, eight active-site mutants of Thermococcus litoralis DSM 5473 L-asparaginase Tli10209 were developed. T70A exhibited a 5.11-fold increase compared with the wild enzyme in physiological conditions. Double-mutant enzymes were created by combining mutants with higher hydrolysis activity. T70A/F36Y, T70A/K48L, and T70A/D50G were enhanced by 5.59-, 6.38-, and 5.58-fold. The immobilized enzyme applied in MCF-7 breast cancer cells only required one-seventh of the dose of the free enzyme to achieve the same inhibition rate under near-infrared irradiation. This provides a proof of concept that it is possible to reduce the consumption of L-Asn by improving its activity, thus providing a method to manage side effects.


Assuntos
Antineoplásicos , Asparaginase , Mutagênese Sítio-Dirigida , Asparaginase/genética , Asparaginase/química , Asparaginase/farmacologia , Asparaginase/metabolismo , Humanos , Antineoplásicos/farmacologia , Antineoplásicos/química , Células MCF-7 , Thermococcus/enzimologia , Thermococcus/genética , Domínio Catalítico
2.
J Nanobiotechnology ; 22(1): 53, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38326899

RESUMO

BACKGROUND: Enzyme therapy based on differential metabolism of cancer cells has demonstrated promising potential as a treatment strategy. Nevertheless, the therapeutic benefit of reported enzyme drugs is compromised by their uncontrollable activity and weak stability. Additionally, thermozymes with high thermal-stability suffer from low catalytic activity at body temperature, preventing them from functioning independently. RESULTS: Herein, we have developed a novel thermo-enzymatic regulation strategy for near-infrared (NIR)-triggered precise-catalyzed photothermal treatment of breast cancer. Our strategy enables efficient loading and delivery of thermozymes (newly screened therapeutic enzymes from thermophilic bacteria) via hyaluronic acid (HA)-coupled gold nanorods (GNRs). These nanocatalysts exhibit enhanced cellular endocytosis and rapid enzyme activity enhancement, while also providing biosafety with minimized toxic effects on untargeted sites due to temperature-isolated thermozyme activity. Locally-focused NIR lasers ensure effective activation of thermozymes to promote on-demand amino acid deprivation and photothermal therapy (PTT) of superficial tumors, triggering apoptosis, G1 phase cell cycle arrest, inhibiting migration and invasion, and potentiating photothermal sensitivity of malignancies. CONCLUSIONS: This work establishes a precise, remotely controlled, non-invasive, efficient, and biosafe nanoplatform for accurate enzyme therapy, providing a rationale for promising personalized therapeutic strategies and offering new prospects for high-precision development of enzyme drugs.


Assuntos
Hipertermia Induzida , Nanotubos , Neoplasias , Aminoácidos , Fototerapia , Luz , Sistemas de Liberação de Medicamentos , Linhagem Celular Tumoral , Ouro/química , Nanotubos/química , Neoplasias/tratamento farmacológico
3.
ACS Omega ; 8(51): 48975-48983, 2023 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-38162791

RESUMO

Mesoporous silica nanoparticles (MSNs), as novel nanocarriers for drug delivery in cancer treatment, have attracted widespread concern because of their rich pore structure, large pore capacity, ease of modification, and biocompatibility. However, the limitation of nontargeting and low uptake efficiency hindered their further application. Considering the overexpression of the transferrin receptor (TfR) on most cancer cell membranes, herein, we propose a strategy to effectively enhance the cellular internalization of MSNs by arming them with the TfR aptamer. Cellular fluorescent imaging and flow cytometry analysis demonstrated that TfR aptamer-functionalized MSNs exhibited superior cellular internalization compared to unmodified or random sequence-modified MSNs toward three different cancer cell lines, including MCF-7, HeLa, and A549. Furthermore, TfR aptamer-functionalized MSNs displayed enhanced drug delivery efficiency compared with MSNs at equivalent doses and incubation times. These results suggested that TfR aptamer-functionalized MSNs have the potential for enhanced delivery of therapeutic agents into TfR-positive cancer cells to improve therapeutic efficacy.

4.
Int J Nanomedicine ; 16: 8037-8048, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34934312

RESUMO

BACKGROUND: The construction of tumor-targeting carriers with favorable transfection efficiency was of great significance to achieve the tumor gene therapy. The phenylboronic acid-modified polyamidoamine (namely PP) was employed as a carrier for the delivery of Polo-like kinase-1 siRNA (siPlk-1), inducing an obvious anti-tumor response. MATERIALS AND METHODS: The interaction between PP and siPlk-1 was evaluated by gel retardation assay. The transfection efficiency and tumor-targeting ability were analyzed by flow cytometry and confocal laser scanning microscopy, using hepatocarcinoma cell line HepG2 as a model. The anti-proliferation effect of PP/siPlk-1 and related mechanism were studied using the strategies of 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, cell apoptosis and cell cycle arrest. The anti-migration effect induced by PP/siPlk-1 delivery was assayed by wound healing and Transwell migration techniques. Finally, quantitative real-time PCR and Western blotting were performed to measure the expression level of Plk-1 and other key targets. RESULTS: The derivative PP could achieve the condensation of siPlk-1 into stable nanoparticles at nitrogen/phosphate groups ratio (N/P ratio) of >3.0, and it could facilitate the transfection of siPk-1 in a phenylboronic acid-dependent manner. The PP/siPlk-1 nanoparticles exhibited obvious anti-proliferation effect owing to the gene silence of Plk-1, which was identified to be associated with the cell apoptosis and cell cycle arrest at G2 phase. Meanwhile, PP/siPlk-1 transfection could efficiently suppress the migration and invasion of tumor cells. CONCLUSION: The derivative PP has been demonstrated to be an ideal tumor-targeting carrier for the delivery of Plk-1 siRNA, exhibiting great potential in the gene therapy of malignant tumors.


Assuntos
Apoptose , Neoplasias , Ácidos Borônicos , Linhagem Celular Tumoral , Proliferação de Células , Humanos , Poliaminas , RNA Interferente Pequeno/genética , Transfecção
5.
Colloids Surf B Biointerfaces ; 206: 111955, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34216852

RESUMO

Combination therapy based on the co-delivery of therapeutic genes and anti-cancer drugs has emerged as a promising approach in the cancer treatment, and stimuli-responsive delivery systems could further improve the therapeutic efficacy. Herein, an ATP aptamer and its complementary DNA were used to form Duplex into which doxorubicin (DOX) was loaded to construct DOX-Duplex, and then the lipoic acid-modified oligoethyleneimine (LA-OEI) was employed as a carrier to realize the co-delivery of DOX-Duplex and miR-23b. The ternary nanocomplex LA-OEI/miR-23b/DOX-Duplex showed excellent anti-proliferative effect by inducing the cell apoptosis via mitochondrial signaling pathway and arresting the cell cycle at S phase. Meanwhile, the co-delivery of DOX-Duplex and miR-23b could efficiently inhibit the metastasis of cancer cells by reducing the expression level of MMP-9. The favorable anti-tumor efficacy of ternary nanocomplex was attributed to the rapid drug release in response to intracellular ATP concentration and reduction conditions and the synergistic effect between DOX-Duplex and miR-23b. Thus, ATP aptamer and reduction-responsive polymer provided a convenient platform to construct dual stimuli-responsive systems for the co-delivery of gene and drug in the cancer treatment.


Assuntos
MicroRNAs , Nanopartículas , Neoplasias , Trifosfato de Adenosina , Linhagem Celular Tumoral , Doxorrubicina/farmacologia , Sistemas de Liberação de Medicamentos , MicroRNAs/genética , Neoplasias/tratamento farmacológico , Neoplasias/genética
6.
Int J Nanomedicine ; 14: 7389-7398, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31571857

RESUMO

BACKGROUND: Therapeutic proteins have been widely used in the treatment of various diseases, and effective carriers are highly required for achieving protein delivery to obtain favorable treatment potency. MATERIALS AND METHODS: A protein-polymer hybrid system was constructed through the genipin-mediated crosslinking of polyethyleneimine with a weight-average molecular weight of 25,000 g/mol (PEI25K) and ribonuclease A (RNase A), namely RGP. RESULTS: The RGP nanoparticles were observed to be easily internationalized in HeLa cells owing to the introduction of positively charged PEI25K, thereby triggering the antiproliferative effects by cleaving RNA molecules in the tumor cells. Moreover, red fluorescence could be obviously visualized in the tumor cells after RGP delivery, which was attributed to the intrinsic characteristics of genipin. CONCLUSION: The protein-polymer hybrid system prepared via the genipin-mediated crosslinking has exhibited potential to be used as a theranostic platform for both in vivo imaging and delivering diverse therapeutic proteins.


Assuntos
Reagentes de Ligações Cruzadas/química , Sistemas de Liberação de Medicamentos , Espaço Intracelular/metabolismo , Iridoides/química , Polietilenoimina/química , Ribonuclease Pancreático/administração & dosagem , Apoptose , Proliferação de Células , Endossomos/metabolismo , Células HeLa , Humanos , Nanopartículas/química , Espectrofotometria Ultravioleta , Espectroscopia de Infravermelho com Transformada de Fourier
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...