Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Pollut ; 237: 468-472, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29510366

RESUMO

Little information exists concerning the long-term interactive effect of nitrogen (N) addition with phosphorus (P) and potassium (K) on Sphagnum N status. This study was conducted as part of a long-term N manipulation on Whim bog in south Scotland to evaluate the long-term alleviation effects of phosphorus (P) and potassium (K) on N saturation of Sphagnum (S. capillifolium). On this ombrotrophic peatland, where ambient deposition was 8 kg N ha-1 yr-1, 56 kg N ha-1 yr-1 of either ammonium (NH4+, Nred) or nitrate (NO3-, Nox) with and without P and K, were added over 11 years. Nutrient concentrations of Sphagnum stem and capitulum, and pore water quality of the Sphagnum layer were assessed. The N-saturated Sphagnum caused by long-term (11 years) and high doses (56 kg N ha-1 yr-1) of reduced N was not completely ameliorated by P and K addition; N concentrations in Sphagnum capitula for Nred 56 PK were comparable with those for Nred 56, although N concentrations in Sphagnum stems for Nred 56 PK were lower than those for Nred 56. While dissolved inorganic nitrogen (DIN) concentrations in pore water for Nred 56 PK were not different from Nred 56, they were lower for Nox 56 PK than for Nox 56 whose stage of N saturation had not advanced compared to Nred 56. These results indicate that increasing P and K availability has only a limited amelioration effect on the N assimilation of Sphagnum at an advanced stage of N saturation. This study concluded that over the long-term P and K additions will not offset the N saturation of Sphagnum.


Assuntos
Nitrogênio/análise , Fósforo/análise , Potássio/metabolismo , Sphagnopsida/química , Compostos de Amônio , Monitoramento Ambiental , Nitratos , Nitrogênio/metabolismo , Fósforo/metabolismo , Caules de Planta , Escócia , Sphagnopsida/metabolismo
2.
Waste Manag ; 56: 113-24, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27302836

RESUMO

Anaerobic digestion (AD) is becoming increasingly implemented within organic waste treatment operations. The storage and processing of large volumes of organic wastes through AD has been identified as a significant source of ammonia (NH3) emissions, however the totality of ammonia emissions from an AD plant have not been previously quantified. The emissions from an AD plant processing food waste were estimated through integrating ambient NH3 concentration measurements, atmospheric dispersion modelling, and comparison with published emission factors (EFs). Two dispersion models (ADMS and a backwards Lagrangian stochastic (bLS) model) were applied to calculate emission estimates. The bLS model (WindTrax) was used to back-calculate a total (top-down) emission rate for the AD plant from a point of continuous NH3 measurement downwind from the plant. The back-calculated emission rates were then input to the ADMS forward dispersion model to make predictions of air NH3 concentrations around the site, and evaluated against weekly passive sampler NH3 measurements. As an alternative approach emission rates from individual sources within the plant were initially estimated by applying literature EFs to the available site parameters concerning the chemical composition of waste materials, room air concentrations, ventilation rates, etc. The individual emission rates were input to ADMS and later tuned by fitting the simulated ambient concentrations to the observed (passive sampler) concentration field, which gave an excellent match to measurements after an iterative process. The total emission from the AD plant thus estimated by a bottom-up approach was 16.8±1.8mgs(-1), which was significantly higher than the back-calculated top-down estimate (7.4±0.78mgs(-1)). The bottom-up approach offered a more realistic treatment of the source distribution within the plant area, while the complexity of the site was not ideally suited to the bLS method, thus the bottom-up method is believed to give a better estimate of emissions. The storage of solid digestate and the aerobic treatment of liquid effluents at the site were the greatest sources of NH3 emissions.


Assuntos
Poluentes Atmosféricos/análise , Amônia/análise , Monitoramento Ambiental , Resíduos de Alimentos , Modelos Teóricos , Gerenciamento de Resíduos , Anaerobiose , Escócia , Resíduos Sólidos/análise
3.
Sci Total Environ ; 559: 113-120, 2016 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-27058130

RESUMO

The ability of Sphagnum moss to efficiently intercept atmospheric nitrogen (N) has been assumed to be vulnerable to increased N deposition. However, the proposed critical load (20kgNha(-1)yr(-1)) to exceed the capacity of the Sphagnum N filter has not been confirmed. A long-term (11years) and realistic N manipulation on Whim bog was used to study the N filter function of Sphagnum (Sphagnum capillifolium) in response to increased wet N deposition. On this ombrotrophic peatland where ambient deposition was 8kgNha(-1)yr(-1), an additional 8, 24, and 56kgNha(-1)yr(-1) of either ammonium (NH4(+)) or nitrate (NO3(-)) has been applied for 11years. Nutrient status of Sphagnum and pore water quality from the Sphagnum layer were assessed. The N filter function of Sphagnum was still active up to 32kgNha(-1)yr(-1) even after 11years. N saturation of Sphagnum and subsequent increases in dissolved inorganic N (DIN) concentration in pore water occurred only for 56kgNha(-1)yr(-1) of NH4(+) addition. These results indicate that the Sphagnum N filter is more resilient to wet N deposition than previously inferred. However, functionality will be more compromised when NH4(+) dominates wet deposition for high inputs (56kgNha(-1)yr(-1)). The N filter function in response to NO3(-) uptake increased the concentration of dissolved organic N (DON) and associated organic anions in pore water. NH4(+) uptake increased the concentration of base cations and hydrogen ions in pore water though ion exchange. The resilience of the Sphagnum N filter can explain the reported small magnitude of species change in the Whim bog ecosystem exposed to wet N deposition. However, changes in the leaching substances, arising from the assimilation of NO3(-) and NH4(+), may lead to species change.


Assuntos
Monitoramento Ambiental , Nitrogênio/metabolismo , Sphagnopsida/fisiologia , Compostos de Amônio , Ecossistema , Nitratos , Nitrogênio/química
4.
Chemosphere ; 119: 769-777, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25194477

RESUMO

A detailed spatial and temporal assessment of urban NH3 levels and potential emission sources was made with passive samplers in six major Spanish cities (Barcelona, Madrid, A Coruña, Huelva, Santa Cruz de Tenerife and Valencia). Measurements were conducted during two different periods (winter-autumn and spring-summer) in each city. Barcelona showed the clearest spatial pattern, with the highest concentrations in the old city centre, an area characterised by a high population density and a dense urban architecture. The variability in NH3 concentrations did not follow a common seasonal pattern across the different cities. The relationship of urban NH3 with SO2 and NOX allowed concluding on the causes responsible for the variations in NH3 levels between measurement periods observed in Barcelona, Huelva and Madrid. However, the factors governing the variations in A Coruña, Valencia and Santa Cruz de Tenerife are still not fully understood. This study identified a broad variability in NH3 concentrations at the city-scale, and it confirms that NH3 sources in Spanish urban environments are vehicular traffic, biological sources (e.g. garbage containers), wastewater treatment plants, solid waste treatment plants and industry. The importance of NH3 monitoring in urban environments relies on its role as a precursor of secondary inorganic species and therefore PMX. Further research should be addressed in order to establish criteria to develop and implement mitigation strategies for cities, and to include urban NH3 sources in the emission inventories.


Assuntos
Poluentes Atmosféricos/análise , Amônia/análise , Cidades , Monitoramento Ambiental , Estações do Ano , Espanha
5.
Environ Pollut ; 179: 120-31, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23669461

RESUMO

We examined the consequences of the spatial heterogeneity of atmospheric ammonia (NH3) by measuring and modelling NH3 concentrations and deposition at 25 m grid resolution for a rural landscape containing intensive poultry farming, agricultural grassland, woodland and moorland. The emission pattern gave rise to a high spatial variability of modelled mean annual NH3 concentrations and dry deposition. Largest impacts were predicted for woodland patches located within the agricultural area, while larger moorland areas were at low risk, due to atmospheric dispersion, prevailing wind direction and low NH3 background. These high resolution spatial details are lost in national scale estimates at 1 km resolution due to less detailed emission input maps. The results demonstrate how the spatial arrangement of sources and sinks is critical to defining the NH3 risk to semi-natural ecosystems. These spatial relationships provide the foundation for local spatial planning approaches to reduce environmental impacts of atmospheric NH3.


Assuntos
Poluentes Atmosféricos/análise , Amônia/análise , Monitoramento Ambiental , Modelos Químicos , Agricultura , Atmosfera/química , Ecossistema , Meio Ambiente
6.
Philos Trans R Soc Lond B Biol Sci ; 368(1621): 20130166, 2013 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-23713128

RESUMO

Existing descriptions of bi-directional ammonia (NH3) land-atmosphere exchange incorporate temperature and moisture controls, and are beginning to be used in regional chemical transport models. However, such models have typically applied simpler emission factors to upscale the main NH3 emission terms. While this approach has successfully simulated the main spatial patterns on local to global scales, it fails to address the environment- and climate-dependence of emissions. To handle these issues, we outline the basis for a new modelling paradigm where both NH3 emissions and deposition are calculated online according to diurnal, seasonal and spatial differences in meteorology. We show how measurements reveal a strong, but complex pattern of climatic dependence, which is increasingly being characterized using ground-based NH3 monitoring and satellite observations, while advances in process-based modelling are illustrated for agricultural and natural sources, including a global application for seabird colonies. A future architecture for NH3 emission-deposition modelling is proposed that integrates the spatio-temporal interactions, and provides the necessary foundation to assess the consequences of climate change. Based on available measurements, a first empirical estimate suggests that 5°C warming would increase emissions by 42 per cent (28-67%). Together with increased anthropogenic activity, global NH3 emissions may increase from 65 (45-85) Tg N in 2008 to reach 132 (89-179) Tg by 2100.


Assuntos
Poluição do Ar/análise , Amônia/química , Atmosfera/análise , Mudança Climática , Clima , Modelos Teóricos , Ciclo do Nitrogênio , Amônia/análise , Animais , Aves , Estados Unidos
7.
Environ Monit Assess ; 82(2): 149-85, 2003 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-12602626

RESUMO

In the context of international efforts to reduce the impacts of atmospheric NH3 and NH4+ (collectively, NHx). it is important to establish the link between NH3 emissions and monitoring of NHx concentrations and deposition. This is equally relevant to situations where NH3 emissions changes are certain (e.g. due to changed source sector activity), as to cases where NH3 abatement technologies have been implemented. Correct interpretation of adequate atmospheric measurements is essential, since monitoring data provide the only means to evaluate trends in regional NH3 emissions. These issues have been reviewed using available measurements and modelling from nine countries. In addition to historic datasets, the analysis here considers countries where NH3 source sector activity changed (both increases and decreases) and countries where NH3 abatement policies have been implemented. In The Netherlands an 'ammonia gap' was identified between the expected reduction and results of monitoring, and was attributed initially to ineffectiveness of the abatement measures. The analysis here for a range of countries shows that atmospheric interactions complicate the expected changes, particularly since SO2 emissions have decreased at the same time, while at many sites the few years of available data show substantial inter-annual variation. It is concluded that networks need to be established that speciate between NH3 and aerosol NH4+, in addition to providing wet deposition, and sample at sufficient sites for robust regional estimates to be established. Such measurements will be essential to monitor compliance of the international agreements on NH3 emission abatement.


Assuntos
Poluentes Atmosféricos/análise , Poluição do Ar/prevenção & controle , Amônia/química , Fidelidade a Diretrizes , Nitrogênio/química , Aerossóis , Poluição do Ar/legislação & jurisprudência , Amônia/análise , Monitoramento Ambiental/normas , Cooperação Internacional , Países Baixos , Nitrogênio/análise , Reprodutibilidade dos Testes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...