Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Inflamm Res ; 17: 2839-2850, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38751687

RESUMO

Purpose: Acupoint autohemotherapy (A-AHT) has been proposed as an alternative and complementary treatment for atopic dermatitis (AD), yet the exact role of its blood component in terms of therapeutic efficacy and mechanism of action is still largely unknown. Methods: This study aimed to evaluate the therapeutic efficacies and action mechanisms of intramuscular injections of autologous whole blood (AWB) and mouse immunoglobulin G (IgG) (autologous or heterologous) at acupoints on 2,4-dinitrochlorobenzene (DNCB)-induced AD mouse models. Serum levels of total immunoglobulin E (IgE), IgG, interleukin-10 (IL-10), and interferon-gamma (IFN-γ) were measured, as well as mRNA expression levels of Forkhead box P3 (FoxP3), IL-10 and IFN-γ in dorsal skin lesions, and IL-10+, IFN-γ+ and FoxP3+CD4+T cells in murine spleen. Results: It showed that repeated acupoint injection of AWB, autologous total IgG (purified from autologous blood in AD mice) or heterologous total IgG (purified from healthy blood in normal mice) effectively reduced the severity of AD symptoms and decreased epidermal and dermal thickness as well as mast cells in skin lesions. Additionally, AWB acupoint injection was found to upregulate FoxP3+, IL-10+ and IFN-γ+ CD4+T cells in murine spleen, suppressing the production of IgE antibodies and increasing that of IgG antibodies in the serum. Furthermore, both AWB and autologous total IgG administrations significantly elevated FoxP3 expression, mRNA levels of IL-10 and IFN-γ in dorsal skin lesions. However, acupoint injection of heterologous total IgG had no effect on regulatory T (Treg) and Th1 cells modulation. Conclusion: These findings suggest that the therapeutic effects of A-AHT on AD are mediated by IgG-induced activation of Treg cells.

2.
J Hazard Mater ; 465: 133060, 2024 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-38016314

RESUMO

Exposure to organic ultraviolet (UV) filters has raised concerns due to their potential adverse effects on environments. However, their toxic mechanisms on plants remain elusive. In this study, using integrative physiological and transcriptomic approaches we investigated the physiological and molecular responses to three representative UV filters, namely oxybenzone (OBZ), avobenzone (AVB), and octinoxate (OMC), in an agricultural model plant tobacco. The exposure to UV filters disrupts the functionality of photosystem reaction centers and the light-harvesting apparatus. Concurrently, UV filters exert a suppressive effect on the expression of genes encoding Rubisco and Calvin-Benson cycle enzymes, resulting in a decreased efficiency of the Calvin-Benson cycle and consequently hampering the process of photosynthesis. Exposure to UV filters leads to significant generation of reactive oxygen species within tobacco leaves and downregulation of oxidoreductase activities. Moreover, UV filters promote abscisic acid (ABA) accumulation by inducing the expression of ABA biosynthesis genes whereas repress indole-3-acetic acid (IAA) biosynthesis gene expression, which induce leaf yellowing and slow plant growth. In summary, the organic UV filters exert toxic effects on tobacco growth by inhibiting chlorophyll synthesis, photosynthesis, and the Calvin-Benson cycle, while generating excessive reactive oxygen species. This study sheds light on the toxic and tolerance mechanisms of UV filters in agricultural crops.


Assuntos
Nicotiana , Raios Ultravioleta , Espécies Reativas de Oxigênio/metabolismo , Fotossíntese , Ácido Abscísico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...