Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Front Public Health ; 10: 1050096, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36568757

RESUMO

Background: In May 2021, the SARS-CoV-2 Delta variant led to the first local outbreak in China in Guangzhou City. We explored the epidemiological characteristics and spatial-temporal clustering of this outbreak. Methods: Based on the 153 cases in the SARS-CoV-2 Delta variant outbreak, the Knox test was used to analyze the spatial-temporal clustering of the outbreak. We further explored the spatial-temporal clustering by gender and age groups, as well as compared the changes of clustering strength (S) value between the two outbreaks in Guangzhou. Results: The result of the Knox analysis showed that the areas at short distances and brief periods presented a relatively high risk. The strength of clustering of male-male pairs was higher. Age groups showed that clustering was concentrated in cases aged ≤ 18 years matched to 18-59 years and cases aged 60+ years. The strength of clustering of the outbreak declined after the implementation of public health measures. The change of strength of clustering at time intervals of 1-5 days decreased greater in 2021 (S = 129.19, change rate 38.87%) than that in 2020 (S = 83.81, change rate 30.02%). Conclusions: The outbreak of SARS-CoV-2 Delta VOC in Guangzhou has obvious spatial-temporal clustering. The timely intervention measures are essential role to contain this outbreak of high transmission.


Assuntos
COVID-19 , SARS-CoV-2 , Masculino , Humanos , COVID-19/epidemiologia , Incidência , Surtos de Doenças , China/epidemiologia , Análise por Conglomerados
2.
Comput Math Methods Med ; 2022: 2515432, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35693260

RESUMO

Dengue as an acute infectious disease threatens global public health and has sparked broad research interest. However, existing studies generally ignore the spatial dependencies involved in dengue forecast, and consideration of temporal periodicity is absent. In this work, we propose a spatiotemporal component fusion model (STCFM) to solve the dengue risk forecast issue. Considering that mosquitoes are an important vector of dengue transmission, we introduce feature factors involving mosquito abundance and spatiotemporal lags to model temporal trends and spatial distributions separately on the basis of statistical properties. Specifically, we conduct multiscale modeling of temporal dependencies to enhance the forecast capability of relevant periods by capturing the historical variation patterns of the data across different segments in the temporal dimension. In the spatial dimension, we quantify the multivariate spatial correlation analysis as additional features to strengthen the spatial feature representation and adopt the ConvLSTM model to learn spatial dependencies adequately. The final forecast results are obtained by stacking strategy fusion in ensemble learning. We conduct experiments on real dengue datasets. The results indicate that STCFM improves prediction accuracy through effective spatiotemporal feature representations and outperforms candidate models with a reasonable component construction strategy.


Assuntos
Aedes , Dengue , Animais , Dengue/epidemiologia , Previsões , Humanos , Mosquitos Vetores , Análise Espaço-Temporal
3.
Am J Trop Med Hyg ; 103(2): 793-809, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32602435

RESUMO

In moving toward malaria elimination, finer scale malaria risk maps are required to identify hotspots for implementing surveillance-response activities, allocating resources, and preparing health facilities based on the needs and necessities at each specific area. This study aimed to demonstrate the use of multi-criteria decision analysis (MCDA) in conjunction with geographic information systems (GISs) to create a spatial model and risk maps by integrating satellite remote-sensing and malaria surveillance data from 18 counties of Yunnan Province along the China-Myanmar border. The MCDA composite and annual models and risk maps were created from the consensus among the experts who have been working and know situations in the study areas. The experts identified and provided relative factor weights for nine socioeconomic and disease ecology factors as a weighted linear combination model of the following: ([Forest coverage × 0.041] + [Cropland × 0.086] + [Water body × 0.175] + [Elevation × 0.297] + [Human population density × 0.043] + [Imported case × 0.258] + [Distance to road × 0.030] + [Distance to health facility × 0.033] + [Urbanization × 0.036]). The expert-based model had a good prediction capacity with a high area under curve. The study has demonstrated the novel integrated use of spatial MCDA which combines multiple environmental factors in estimating disease risk by using decision rules derived from existing knowledge or hypothesized understanding of the risk factors via diverse quantitative and qualitative criteria using both data-driven and qualitative indicators from the experts. The model and fine MCDA risk map developed in this study could assist in focusing the elimination efforts in the specifically identified locations with high risks.


Assuntos
Agricultura , Altitude , Clima , Doenças Transmissíveis Importadas/epidemiologia , Florestas , Mapeamento Geográfico , Malária/epidemiologia , Densidade Demográfica , Urbanização , China/epidemiologia , Técnicas de Apoio para a Decisão , Erradicação de Doenças , Instalações de Saúde , Humanos , Malária/prevenção & controle , Mianmar/epidemiologia , Risco , Rios , Análise Espaço-Temporal
4.
Korean J Parasitol ; 58(3): 267-278, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32615740

RESUMO

The heterogeneity and complexity of malaria involves political and natural environments, socioeconomic development, cross-border movement, and vector biology; factors that cannot be changed in a short time. This study aimed to assess the impact of economic growth and cross-border movement, toward elimination of malaria in Yunnan Province during its pre-elimination phase. Malaria data during 2011-2016 were extracted from 18 counties of Yunnan and from 7 villages, 11 displaced person camps of the Kachin Special Region II of Myanmar. Data of per-capita gross domestic product (GDP) were obtained from Yunnan Bureau of Statistics. Data were analyzed and mapped to determine spatiotemporal heterogeneity at county and village levels. There were a total 2,117 malaria cases with 85.2% imported cases; most imported cases came from Myanmar (78.5%). Along the demarcation line, malaria incidence rates in villages/camps in Myanmar were significantly higher than those of the neighboring villages in China. The spatial and temporal trends suggested that increasing per-capita GDP may have an indirect effect on the reduction of malaria cases when observed at macro level; however, malaria persists owing to complex, multi-faceted factors including poverty at individual level and cross-border movement of the workforce. In moving toward malaria elimination, despite economic growth, cooperative efforts with neighboring countries are critical to interrupt local transmission and prevent reintroduction of malaria via imported cases. Cross-border workers should be educated in preventive measures through effective behavior change communication, and investment is needed in active surveillance systems and novel diagnostic and treatment services during the elimination phase.


Assuntos
Economia , Malária/epidemiologia , Migrantes , China/epidemiologia , Feminino , Guanosina Difosfato , Educação em Saúde , Humanos , Malária/prevenção & controle , Masculino , Mianmar/epidemiologia , Fatores Socioeconômicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA