Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
BMC Genomics ; 22(1): 911, 2021 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-34930131

RESUMO

BACKGROUND: Known as the prerequisite component for the heterosis breeding system, the male sterile line determines the hybrid yield and seed purity. Therefore, a deep understanding of the mechanism and gene network that leads to male sterility is crucial. BS366, a temperature-sensitive genic male sterile (TGMS) line, is male sterile under cold conditions (12 °C with 12 h of daylight) but fertile under normal temperature (20 °C with 12 h of daylight). RESULTS: During meiosis, BS366 was defective in forming tetrads and dyads due to the abnormal cell plate. During pollen development, unusual vacuolated pollen that could not accumulate starch grains at the binucleate stage was also observed. Transcriptome analysis revealed that genes involved in the meiotic process, such as sister chromatid segregation and microtubule-based movement, were repressed, while genes involved in DNA and histone methylation were induced in BS366 under cold conditions. MethylRAD was used for reduced DNA methylation sequencing of BS366 spikes under both cold and control conditions. The differentially methylated sites (DMSs) located in the gene region were mainly involved in carbohydrate and fatty acid metabolism, lipid metabolism, and transport. Differentially expressed and methylated genes were mainly involved in cell division. CONCLUSIONS: These results indicated that the methylation of genes involved in carbon metabolism or fatty acid metabolism might contribute to male sterility in BS366 spikes, providing novel insight into the molecular mechanism of wheat male sterility.


Assuntos
Transcriptoma , Triticum , Metilação de DNA , Pólen/genética , Temperatura , Triticum/genética
2.
Plant Sci ; 310: 110961, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34315586

RESUMO

Hyperaccumulators store metals in the vacuoles of leaf cells. To investigate the role of vacuolar compartmentalization in Cd accumulation, chelation and induced antioxidation, we quantified the amounts of total cadmium (Cd), Cd2+, glutathione (GSH) and reactive oxygen species (ROS) in leaf cells of Solanum nigrum L. The results confirmed that vacuoles were, indeed, the main storage compartments for Cd. We then found that with increased Cd treatment concentration, the proportion of vacuolar Cd in protoplasts showed its ultimate storage capacity (82.24 %-83.40 %), and the Cd concentration stored in the protoplast maintained at a certain level (73.81-77.46 mg L-1). Besides, studies on different forms of Cd showed that the chelation state was dominant in the protoplast. The large level appearance of Cd2+ outside the vacuole revealed the limitations of vacuolar Cd2+ sequestration. The relationships between the combined forms of Cd and GSH outside the vacuole (R2 = 0.9906) showed GSH was mainly distributed to important compartments for chelation, not to vacuoles. We also demonstrated the presence of ROS-induced oxidative stress and detoxification mediated by the antioxidant GSH in vacuoles, suggesting that sequestration into vacuoles is an active process accompanied by chelation and antioxidant-mediated detoxification.


Assuntos
Cádmio/toxicidade , Raízes de Plantas/metabolismo , Solanum nigrum/metabolismo , Antioxidantes/metabolismo , Glutationa/metabolismo , Microscopia de Fluorescência , Raízes de Plantas/efeitos dos fármacos , Protoplastos/efeitos dos fármacos , Protoplastos/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Solanum nigrum/efeitos dos fármacos
3.
BMC Genomics ; 22(1): 310, 2021 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-33926387

RESUMO

BACKGROUND: DNA methyltransferase (DMT) genes contribute to plant stress responses and development by de novo establishment and subsequent maintenance of DNA methylation during replication. The photoperiod and/or temperature-sensitive genic male sterile (P/TGMS) lines play an important role in hybrid seed production of wheat. However, only a few studies have reported on the effect of DMT genes on temperature-sensitive male sterility of wheat. Although DMT genes have been investigated in some plant species, the identification and analysis of DMT genes in wheat (Triticum aestivum L.) based on genome-wide levels have not been reported. RESULTS: In this study, a detailed overview of phylogeny of 52 wheat DMT (TaDMT) genes was presented. Homoeolog retention for TaDMT genes was significantly above the average retention rate for whole-wheat genes, indicating the functional importance of many DMT homoeologs. We found that the strikingly high number of TaDMT genes resulted mainly from the significant expansion of the TaDRM subfamily. Intriguingly, all 5 paralogs belonged to the wheat DRM subfamily, and we speculated that tandem duplications might play a crucial role in the TaDRM subfamily expansion. Through the transcriptional analysis of TaDMT genes in a TGMS line BS366 and its hybrids with the other six fertile lines under sterile and fertile conditions, we concluded that TaCMT-D2, TaMET1-B1, and TaDRM-U6 might be involved in male sterility in BS366. Furthermore, a correlation analysis showed that TaMET1-B1 might negatively regulate the expression of TaRAFTIN1A, an important gene for pollen development, so we speculated regarding an epigenetic regulatory mechanism underlying the male sterility of BS366 via the interaction between TaMET1-B1 and TaRAFTIN1A. CONCLUSIONS: Our findings presented a detailed phylogenic overview of the DMT genes and could provide novel insights into the effects of DMT genes on TGMS wheat.


Assuntos
Infertilidade Masculina , Triticum , DNA , Metilação de DNA , Regulação da Expressão Gênica de Plantas , Humanos , Masculino , Metiltransferases , Infertilidade das Plantas/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Temperatura , Triticum/genética , Triticum/metabolismo
4.
Front Plant Sci ; 11: 587244, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33193539

RESUMO

NF-YA transcription factors function in modulating tolerance to abiotic stresses that are serious threats to crop yields. In this study, GmNFYA13, an NF-YA gene in soybean, was strongly induced by salt, drought, ABA, and H2O2, and suppressed by tungstate, an ABA synthesis inhibitor. The GmNFYA13 transcripts were detected in different tissues in seedling and flowering stages, and the expression levels in roots were highest. GmNFYA13 is a nuclear localization protein with self-activating activity. Transgenic Arabidopsis plants overexpressing GmNFYA13 with higher transcript levels of stress-related genes showed ABA hypersensitivity and enhanced tolerance to salt and drought stresses compared with WT plants. Moreover, overexpression of GmNFYA13 resulted in higher salt and drought tolerance in OE soybean plants, while suppressing it produced the opposite results. In addition, GmNFYA13 could bind to the promoters of GmSALT3, GmMYB84, GmNCED3, and GmRbohB to regulate their expression abundance in vivo. The data in this study suggested that GmNFYA13 enhanced salt and drought tolerance in soybean plants.

5.
Planta ; 247(6): 1307-1321, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29504038

RESUMO

MAIN CONCLUSION: Transcriptome analysis was carried out for wheat seedlings and spikes from hybrid Jingmai 8 and both inbred lines to unravel mechanisms underlying heterosis. Heterosis, known as one of the most successful strategies for increasing crop yield, has been widely exploited in plant breeding systems. Despite its great importance, the molecular mechanism underlying heterosis remains elusive. In the present study, RNA sequencing (RNA-seq) was performed on the seedling and spike tissues of the wheat (Triticum aestivum) hybrid Jingmai 8 (JM8) and its homozygous parents to unravel the underlying mechanisms of wheat heterosis. In total, 1686 and 2334 genes were identified as differentially expressed genes (DEGs) between the hybrid and the two inbred lines in seedling and spike tissues, respectively. Gene Ontology analysis revealed that DEGs from seedling tissues were significantly enriched in processes involved in photosynthesis and carbon fixation, and the majority of these DEGs expressed at a higher level in JM8 compared to both inbred lines. In addition, cell wall biogenesis and protein biosynthesis-related pathways were also significantly represented. These results confirmed that a combination of different pathways could contribute to heterosis. The DEGs between the hybrid and the two inbred progenitors from the spike tissues were significantly enriched in biological processes related to transcription, RNA biosynthesis and molecular function categories related to transcription factor activities. Furthermore, transcription factors such as NAC, ERF, and TIF-IIA were highly expressed in the hybrid JM8. These results may provide valuable insights into the molecular mechanisms underlying wheat heterosis.


Assuntos
Regulação da Expressão Gênica de Plantas , Vigor Híbrido/genética , Transcriptoma , Triticum/genética , Perfilação da Expressão Gênica , Ontologia Genética , Endogamia , Inflorescência/genética , Inflorescência/fisiologia , Fotossíntese , Plântula/genética , Plântula/fisiologia , Análise de Sequência de RNA , Triticum/fisiologia
6.
Funct Integr Genomics ; 14(4): 717-30, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25344442

RESUMO

The phytohormone abscisic acid (ABA) plays crucial roles in adaptive responses of plants to abiotic stresses. ABA-responsive element binding proteins (AREBs) are basic leucine zipper transcription factors that regulate the expression of downstream genes containing ABA-responsive elements (ABREs) in promoter regions. A novel ABI-like (ABA-insensitive) transcription factor gene, named TaABL1, containing a conserved basic leucine zipper (bZIP) domain was cloned from wheat. Southern blotting showed that three copies were present in the wheat genome. Phylogenetic analyses indicated that TaABL1 belonged to the AREB subfamily of the bZIP transcription factor family and was most closely related to ZmABI5 in maize and OsAREB2 in rice. Expression of TaABL1 was highly induced in wheat roots, stems, and leaves by ABA, drought, high salt, and low temperature stresses. TaABL1 was localized inside the nuclei of transformed wheat mesophyll protoplast. Overexpression of TaABL1 enhanced responses of transgenic plants to ABA and hastened stomatal closure under stress, thereby improving tolerance to multiple abiotic stresses. Furthermore, overexpression of TaABL1 upregulated or downregulated the expression of some stress-related genes controlling stomatal closure in transgenic plants under ABA and drought stress conditions, suggesting that TaABL1 might be a valuable genetic resource for transgenic molecular breeding.


Assuntos
Adaptação Fisiológica/genética , Genes de Plantas , Proteínas de Plantas/genética , Estresse Fisiológico/genética , Fatores de Transcrição/genética , Triticum/genética , Ácido Abscísico/farmacologia , Adaptação Fisiológica/efeitos dos fármacos , Arabidopsis/efeitos dos fármacos , Arabidopsis/genética , Arabidopsis/fisiologia , Congelamento , Dosagem de Genes , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Células do Mesofilo/efeitos dos fármacos , Células do Mesofilo/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Proteínas de Plantas/metabolismo , Estômatos de Plantas/efeitos dos fármacos , Estômatos de Plantas/fisiologia , Plantas Geneticamente Modificadas , Transporte Proteico/efeitos dos fármacos , Protoplastos/efeitos dos fármacos , Protoplastos/metabolismo , Tolerância ao Sal/efeitos dos fármacos , Tolerância ao Sal/genética , Estresse Fisiológico/efeitos dos fármacos , Frações Subcelulares/efeitos dos fármacos , Frações Subcelulares/metabolismo , Nicotiana/efeitos dos fármacos , Nicotiana/genética , Nicotiana/fisiologia , Fatores de Transcrição/metabolismo
7.
Plant Mol Biol ; 75(6): 537-53, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21331631

RESUMO

Abscisic acid (ABA)-responsive element binding proteins (AREBs) are basic domain/leucine zipper transcription factors that bind to the ABA-responsive element (ABRE) in the promoter regions of ABA-inducible genes in plants. A novel bZIP transcription factor gene, GmbZIP1, encoding 438 amino acids with a conserved bZIP domain composed of 60 amino acids was isolated from salt-tolerant soybean cv. Tiefeng 8. Southern blotting showed that only one copy was present in the soybean genome. Phylogenetic analyses showed that GmbZIP1 belonged to the AREB subfamily of the bZIP family and was most closely related to AtABF2 and OsTRAB1. The expression of GmbZIP1 was highly induced by ABA, drought, high salt and low temperature; and GmbZIP1 was expressed in soybean roots, stems and leaves under different stress conditions. GmbZIP1 was localized inside the nuclei of transformed onion epidermal cells. Overexpression of GmbZIP1 enhanced the responses of transgenic plants to ABA and triggered stomatal closure under stresses, potentially leading to improved tolerances to several abiotic stresses such as high salt, low temperature and drought in transgenic plants. Furthermore, overexpression of GmbZIP1 affected the expression of some ABA or stress-related genes involved in regulating stomatal closure in Arabidopsis under ABA, drought and high salt stress conditions. A few AREB elements were detected in the promoter region of those ABA or stress-related genes, suggesting that GmbZIP1 regulates the ABA response or stomatal closure mediated by those downstream genes in transgenic Arabidopsis. Moreover, GmbZIP1 was used to improve the drought tolerance trait of Chinese wheat varieties BS93. Functional analysis showed that overexpression of GmbZIP1 enhanced the drought tolerance of transgenic wheat, and transcripts of GmbZIP1 were detected in transgenic wheat using RT-PCR. In addition, GmbZIP1 overexpression did not result in growth retardation in all transgenic plants, suggesting that GmbZIP1 may be a valuable genetic resource for engineering stress tolerance of crops.


Assuntos
Fatores de Transcrição de Zíper de Leucina Básica/genética , Glycine max/genética , Plantas Geneticamente Modificadas/genética , Proteínas de Soja/genética , Estresse Fisiológico/genética , Arabidopsis/genética , Fatores de Transcrição de Zíper de Leucina Básica/fisiologia , Northern Blotting , Southern Blotting , Resposta ao Choque Frio/genética , Desidratação/genética , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Genes de Plantas/genética , Genes de Plantas/fisiologia , Filogenia , Transpiração Vegetal/genética , Plantas Geneticamente Modificadas/fisiologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Plantas Tolerantes a Sal/genética , Proteínas de Soja/fisiologia , Estresse Fisiológico/fisiologia , Triticum/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...