Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Drug Deliv Rev ; 209: 115304, 2024 06.
Artigo em Inglês | MEDLINE | ID: mdl-38599495

RESUMO

The lymphatic system has garnered significant attention in drug delivery research due to the advantages it offers, such as enhancing systemic exposure and enabling lymph node targeting for nanomedicines via the lymphatic delivery route. The journey of drug carriers involves transport from the administration site to the lymphatic vessels, traversing the lymph before entering the bloodstream or targeting specific lymph nodes. However, the anatomical and physiological barriers of the lymphatic system play a pivotal role in influencing the behavior and efficiency of carriers. To expedite research and subsequent clinical translation, this review begins by introducing the composition and classification of the lymphatic system. Subsequently, we explore the routes and mechanisms through which nanoparticles enter lymphatic vessels and lymph nodes. The review further delves into the interactions between nanomedicine and body fluids at the administration site or within lymphatic vessels. Finally, we provide a comprehensive overview of recent advancements in lymphatic delivery systems, addressing the challenges and opportunities inherent in current systems for delivering macromolecules and vaccines.


Assuntos
Sistemas de Liberação de Medicamentos , Sistema Linfático , Nanopartículas , Humanos , Nanopartículas/administração & dosagem , Sistema Linfático/metabolismo , Animais , Vasos Linfáticos/metabolismo , Vasos Linfáticos/fisiologia , Portadores de Fármacos/química , Nanomedicina , Linfonodos/metabolismo
2.
Int J Biol Sci ; 19(6): 1698-1712, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37063415

RESUMO

Alleviating immunosuppression of the tumor microenvironment is an important strategy to improve immune checkpoint therapy. It is an urgent but unmet need to develop adjuvant therapeutics for assisting the mainstay immunotherapies. Trichosanthin is an approved gynecology drug in China and its immunomodulatory effects have drawn much attention as an old drug for new applications in cancer. In this work, a recombinant cell-penetrating trichosanthin (rTCS-LMWP) was prepared via genetic fusion of a cell-penetrating peptide sequence (LMWP) to trichosanthin aiming to overcome the intratumoral penetration and intracellular delivery challenges. The potential of trichosanthin as an adjuvant therapy was explored, including its effects on tumor cells, antigen-presenting cells, tumor immune microenvironment, and the synergistic effect in combination with anti-PD-1. The results revealed that rTCS-LMWP can stimulate the maturation of dendritic cells via activating the STING-TBK1-IRF3 pathway, repolarize the protumor M2-type macrophages, and upregulate the pro-inflammatory cytokine expression. Moreover, rTCS-LMWP can enhance anti-PD-1 therapeutic efficacy in a CT26-bearing mouse model. The synergistic effect involved the induction of immunogenic cell death in the tumors, the proliferation and functionalization of cytotoxic T cells, and the suppression of the immunosuppressive regulatory T cells. These findings indicate that trichosanthin can be developed as an immunomodulator to facilitate cancer immunotherapy.


Assuntos
Neoplasias Colorretais , Tricosantina , Animais , Camundongos , Células Apresentadoras de Antígenos , Linhagem Celular Tumoral , Neoplasias Colorretais/tratamento farmacológico , Citocinas , Tricosantina/farmacologia , Tricosantina/uso terapêutico , Microambiente Tumoral
3.
Nano Lett ; 23(9): 3904-3912, 2023 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-37043295

RESUMO

Transcytosis-based active transport of cancer nanomedicine has shown great promise for enhancing its tumor extravasation and infiltration and antitumor activity, but how the key nanoproperties of nanomedicine, particularly particle size, influence the transcytosis remains unknown. Herein, we used a transcytosis-inducing polymer, poly[2-(N-oxide-N,N-diethylamino)ethyl methacrylate] (OPDEA), and fabricated stable OPDEA-based micelles with different sizes (30, 70, and 140 nm in diameter) from its amphiphilic block copolymer, OPDEA-block-polystyrene (OPDEA-PS). The study of the micelle size effects on cell transcytosis, tumor extravasation, and infiltration showed that the smallest micelles (30 nm) had the fastest transcytosis and, thus, the most efficient tumor extravasation and infiltration. So, the 7-ethyl-10-hydroxyl camptothecin (SN38)-conjugated OPDEA micelles of 30 nm had much enhanced antitumor activity compared with the 140 nm micelles. These results are instructive for the design of active cancer nanomedicine.


Assuntos
Camptotecina , Micelas , Linhagem Celular Tumoral , Camptotecina/farmacologia , Polímeros , Transcitose , Resultado do Tratamento , Tamanho da Partícula
4.
Adv Mater ; 34(16): e2109189, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35196415

RESUMO

Orally administrable anticancer nanomedicines are highly desirable due to their easy and repeatable administration, but are not yet feasible because the current nanomedicine cannot simultaneously overcome the strong mucus and villi barriers and thus have very low bioavailability (BA). Herein, this work presents the first polymeric micelle capable of fast mucus permeation and villi absorption and delivering paclitaxel (PTX) efficiently to tumors with therapeutic efficacy even better than intravenously administered polyethylene glycol based counterpart or free PTX. Poly[2-(N-oxide-N,N-diethylamino)ethyl methacrylate] (OPDEA), a water-soluble polyzwitterion, is highly nonfouling to proteins and other biomacromolecules such as mucin but can weakly bind to phospholipids. Therefore, the micelle of its block copolymer with poly(ε-caprolactone) (OPDEA-PCL) can efficiently permeate through the viscous mucus and bind to villi, which triggers transcytosis-mediated transepithelial transport into blood circulation for tumor accumulation. The orally administered micelles deliver PTX to tumors, efficiently inhibiting the growth of HepG2 and patient-derived hepatocellular carcinoma xenografts and triple-negative breast tumors. These results demonstrate that OPDEA-based micelles may serve as an efficient oral nanomedicine for delivering other small molecules or even large molecules.


Assuntos
Antineoplásicos , Neoplasias , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Linhagem Celular Tumoral , Portadores de Fármacos/química , Humanos , Micelas , Muco , Nanomedicina , Neoplasias/tratamento farmacológico , Paclitaxel/farmacologia , Paclitaxel/uso terapêutico , Polietilenoglicóis/química , Polímeros/química
5.
Front Physiol ; 13: 992190, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36685177

RESUMO

Aim: Hypotrichosis simplex (MIM 146520) is a rare form of monogenic hereditary alopecia. Several genes have been identified as being associated with the disease, including LPAR6, LIPH, and DSG4. LSS encoding lanosterol synthase (LSS) has been shown to cause hypotrichosis simplex, but the related mechanisms have not been elucidated to date. This study aims to find mutations in LSS from a Chinese family, among which a 21-year-old male patient and his 9-year-old sister were affected by hypotrichosis simplex. Methods: Dermoscopy and histological analysis were used to examine patients' scalps, while exome sequencing was used to find the mutations in LSS. Results: The hair loss was only detected on the scalp of the proband and his sister, while other ectodermal structures were normal with no systemic abnormalities. Further, the exome sequencing identified a new homozygous mutation NM_002340.6 (LSS_v001):c.812T>C (p.(Ile271Thr)) in the LSS gene of the proband, which was also found in his sister. In addition, a heterozygous mutation of LSS was found in their asymptomatic parents. Finally, the possible protein structure of the mutational LSS was predicted. Conclusion: The hypotrichosis simplex reported here could be an autosomal recessive disease in this family. The mutation on LSS might reduce the enzyme activity of LSS, thus leading to the disease.

6.
Acta Pharm Sin B ; 11(11): 3622-3635, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34900541

RESUMO

An essential step for cancer vaccination is to break the immunosuppression and elicit a tumor-specific immunity. A major hurdle against cancer therapeutic vaccination is the insufficient immune stimulation of the cancer vaccines and lack of a safe and efficient adjuvant for human use. We discovered a novel cancer immunostimulant, trichosanthin (TCS), that is a clinically used protein drug in China, and developed a well-adaptable protein-engineering method for making recombinant protein vaccines by fusion of an antigenic peptide, TCS, and a cell-penetrating peptide (CPP), termed an "all-in-one" vaccine, for transcutaneous cancer immunization. The TCS adjuvant effect on antigen presentation was investigated and the antitumor immunity of the vaccines was investigated using the different tumor models. The vaccines were prepared via a facile recombinant method. The vaccines induced the maturation of DCs that subsequently primed CD8+ T cells. The TCS-based immunostimulation was associated with the STING pathway. The general applicability of this genetic engineering strategy was demonstrated with various tumor antigens (i.e., legumain and TRP2 antigenic peptides) and tumor models (i.e., colon tumor and melanoma). These findings represent a useful protocol for developing cancer vaccines at low cost and time-saving, and demonstrates the adjuvant application of TCS-an old drug for a new application.

7.
J Control Release ; 329: 1249-1261, 2021 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-33129919

RESUMO

The third-generation of EGFR-TKI osimertinib has been approved as a first-line therapy in NSCLC, representing the most successful advance in molecularly targeted therapy. However, the rapid development of osimertinib resistance renders the unsustainable treatment benefit. Plus, brain metastasis (BMs) is a major mortality cause for NSCLC; there is no drug specifically approved for the osimertinib-resistant BMs of NSCLC yet. To tackle these critical issues, a BBB-permeable biomimetic codelivery system was designed for specifically treating osimertinib-resistant BMs. The T12 peptide-modified albumin nanoparticles coloaded with regorafenib and disulfiram/copper ion chelate repolarized the tumor-promoting CD206hi TGF-ß1+ MΦ via inhibition of FROUNT and thus remodeled tumor immune microenvironment. The treatment efficacy in both the subcutaneous H1975/AZDR model and the brain metastasized model demonstrated the effectiveness of the BBB-penetrating combination therapy and the macrophage-mediated innate immunity. This nanotherapeutic combination strategy provides a translational solution to the formidable challenges of overcoming TKI resistance and treating the TKI-resistant BMs.


Assuntos
Neoplasias Encefálicas , Neoplasias Pulmonares , Acrilamidas , Compostos de Anilina , Biomimética , Neoplasias Encefálicas/tratamento farmacológico , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos , Receptores ErbB/genética , Humanos , Imunidade Inata , Neoplasias Pulmonares/tratamento farmacológico , Macrófagos , Mutação , Inibidores de Proteínas Quinases/farmacologia , Microambiente Tumoral
9.
Nano Lett ; 19(5): 2935-2944, 2019 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-30950276

RESUMO

Remodeling tumor immune microenvironment (TIME) is an important strategy to lift the immunosuppression and achieve immune normalization. In this work, a mannosylated lactoferrin nanoparticulate system (Man-LF NPs) is developed for dual-targeting biomimetic codelivery of shikonin and JQ1 via the mannose receptor and LRP-1 that are overexpressed in both cancer cells and tumor-associated macrophages. The Man-LF NPs can serve as multitarget therapy for inducing immune cell death in the cancer cells, repressing glucose metabolism and repolarizing tumor-associated macrophages, and consequently, lead to remodeling the TIME (e.g., promotion of dendritic cell maturation and CD8+ T cell infiltration, as well as suppression of Treg). Moreover, JQ1 is a suppressor of PD-L1, and the Man-LF NPs can also work on PD-L1 checkpoint blockage. The results reveal the synergistic combination of shikonin and JQ1 and the treatment potency of the Man-LF NPs. Importantly, it is demonstrated that the interaction between the tumor metabolism and immunity plays an essential role in immunotherapy, and the developed drug combination and nanoformulation can target the multiple components in the complicated network of TIME, providing a potential therapeutic strategy.


Assuntos
Azepinas/farmacologia , Nanopartículas/química , Naftoquinonas/farmacologia , Neoplasias/tratamento farmacológico , Triazóis/farmacologia , Biomimética , Linfócitos T CD8-Positivos/efeitos dos fármacos , Linhagem Celular Tumoral , Células Dendríticas/efeitos dos fármacos , Sinergismo Farmacológico , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Imunoterapia , Lactoferrina/química , Lactoferrina/farmacologia , Lectinas Tipo C/química , Lectinas Tipo C/genética , Proteína-1 Relacionada a Receptor de Lipoproteína de Baixa Densidade/genética , Macrófagos/efeitos dos fármacos , Manose/química , Receptor de Manose , Lectinas de Ligação a Manose/química , Lectinas de Ligação a Manose/genética , Naftoquinonas/química , Neoplasias/imunologia , Neoplasias/metabolismo , Neoplasias/patologia , Receptores de Superfície Celular/química , Receptores de Superfície Celular/genética , Microambiente Tumoral/efeitos dos fármacos , Microambiente Tumoral/imunologia
10.
Chem Sci ; 9(10): 2674-2689, 2018 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-29732051

RESUMO

Tumor-associated macrophages (TAMs) are the major components in the tumor microenvironment (TME). The polarization from the protumor M2 (TAM2) to antitumor M1 (TAM1) phenotype can not only lift the immunosuppressive constraints and elicit cytotoxic T-cell immunity but also augment the chemotherapy efficacy. However, the treatment feasibility by TAM modulation in brain tumors and the mechanisms remained unknown. A dual-targeting biomimetic codelivery and treatment strategy was developed for anti-glioma activity. We demonstrated that the albumin nanoparticles modified with dual ligands, a transferrin receptor (TfR)-binding peptide T12 and mannose, efficiently passed through the BBB via the nutrient transporters (i.e., TfR and the albumin-binding receptor SPARC) that were both overexpressed in the BBB and glioma cells, thus achieving biomimetic delivery to glioma. Importantly, after penetrating the BBB, this system can take advantage of the overexpression of the SPARC and mannose receptors on TAM2, thus also targeting the protumor TAM2. With the codelivery disulfiram/copper complex and regorafenib, the system efficiently inhibited the glioma cell proliferation and successfully "re-educated" the protumor TAM2 towards antitumor TAM1. The treatment efficacy was examined in the glioma-bearing nude mice and immunocompetent mice. It showed this system yielded an enhanced treatment outcome, owing to the synergistic combination of chemotherapy and macrophage-directed immunotherapy. The importance of this delivery and therapeutic strategy was to remodel the immune microenvironment and reprogram TAM and trigger macrophage-directed anti-glioma immunotherapy via the interplay of the TAM, Treg, and CD8+ T cells and the effector cytokines. The albumin-based biomimetic brain delivery also provides a promising method for the pharmacotherapy of brain diseases.

11.
ACS Appl Mater Interfaces ; 9(32): 26648-26664, 2017 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-28741923

RESUMO

Multidrug resistance (MDR) and metastasis are the major obstacles in cancer chemotherapy. Nanotechnology-based combination therapy is a useful strategy. Recently, the combination of biologics and small drugs has attracted much attention in cancer therapy. Yet, the treatment outcomes are often compromised by the different pharmacokinetic profiles of the co-administered drugs thus leading to inconsistent drug uptake and suboptimal drug combination at the tumor sites. Nanotechnology-based co-delivery offers a promising method to address this problem, which is well demonstrated in the use of small drug combinations. However, co-delivery of the drugs bearing different physicochemical properties (e.g., proteins and small drugs) remains a formidable challenge. Herein, we developed a self-assembled nanosystem for co-delivery of trichosanthin (TCS) protein and albendazole (ABZ) as a combination therapy for overcoming MDR and metastasis. TCS is a ribosome-inactivating protein with high antitumor activity. However, the druggability of TCS is poor due to its short half-life, lack of tumor-specific action, and low cell uptake. ABZ is a clinically used antihelmintic drug, which can also inhibit tubulin polymerization and thus serve as a potential antitumor drug. In our work, ABZ was encapsulated in the albumin-coated silver nanoparticles (termed ABZ@BSA/Ag NP). The thus-formed NPs were negatively charged and could tightly bind with the cationic TCS that was modified with a cell-penetrating peptide (CPP) low-molecular-weight protamine (termed rTL). Via the stable charge interaction, the nanosystem (rTL/ABZ@BSA/Ag NP) was self-assembled, and featured by the TCS corona. The co-delivery system efficiently inhibited the proliferation of the drug-resistant tumor cells (A549/T and HCT8/ADR) by impairing the cytoskeleton, arresting the cell cycle, and enhancing apoptosis. In addition, the migration and invasion of tumor cells were inhibited presumably due to the impeded cytoskeleton functions. The anti-MDR effect was further confirmed by the in vivo studies with the subcutaneous A549/T tumor mouse model. More importantly, the co-delivery system was demonstrated to be able to inhibit metastasis. The co-delivery system of TCS/ABZ provided a potential strategy for both overcoming drug resistance and inhibiting tumor metastasis.


Assuntos
Resistência a Múltiplos Medicamentos , Albendazol , Animais , Linhagem Celular Tumoral , Nanopartículas Metálicas , Camundongos , Nanopartículas , Prata , Tricosantina
12.
Mol Pharm ; 14(5): 1429-1438, 2017 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-28195491

RESUMO

Multidrug resistance (MDR) is a main obstacle in cancer chemotherapy. The MDR mechanisms involve P-glycoprotein (P-gp) overexpression, abnormality of apoptosis-related protein, and altered expression of drug-targeting proteins. Therapeutic proteins are emerging as candidates for overcoming cancer MDR because of not only their large molecular size that potentially circumvents the P-gp-mediated drug efflux but also their distinctive bioactivity distinguished from small-molecular drugs. Herein we report trichosanthin, a plant protein toxin, possesses synergistic effect with paclitaxel (PTX) in the PTX-resistance A549/T nonsmall cell lung cancer (NSCLC) cells, by reversing PTX-caused caspase 9 phosphorylation and inducing caspase 3-dependent apoptosis. Moreover, via intein-mediated site-specific protein ligation, a matrix metalloproteinase (MMP)-activatable cell-penetrating trichosanthin delivery system was constructed by modification of a cell-penetrating peptide and MMP-2-sensitive PEGylation to overcome the limitation of in vivo application of trichosanthin, by improving the short half-life and poor tumor targeting, as well as immunogenicity. In a mouse model bearing A549/T tumor, the MMP-activatable trichosanthin was further tested for its application for MDR reversal in combination with PTX liposomes. The delivery system showed synergy effect with PTX-loaded liposome in treating MDR cancer in vivo.


Assuntos
Polietilenoglicóis/química , Pró-Fármacos/química , Tricosantina/química , Animais , Caspase 3/metabolismo , Caspase 9/metabolismo , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos , Feminino , Humanos , Neoplasias Pulmonares/metabolismo , Metaloproteinases da Matriz/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Paclitaxel/química , Fosforilação/efeitos dos fármacos
13.
Biomaterials ; 116: 57-68, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27914267

RESUMO

Poor tumor-targeted and cytoplasmic delivery is a bottleneck for protein toxin-based cancer therapy. Ideally, a protein toxin drug should remain stealthy in circulation for prolonged half-life and reduced side toxicity, but turn activated at tumor. PEGylation is a solution to achieve the first goal, but creates a hurdle for the second because PEG rejects interaction between the drugs and tumor cells therein. Such PEG dilemma is an unsolved problem in protein delivery. Herein proposed is a concept of turning PEG dilemma into prodrug-like feature. A site-selectively PEGylated, gelatinase-triggered cell-penetrating trichosanthin protein delivery system is developed with three specific aims. The first is to develop an intein-based ligation method for achieving site-specific modification of protein toxins. The second is to develop a prodrug feature that renders protein toxins remaining stealthy in blood for reduced side toxicity and improved EPR effect. The third is to develop a gelatinase activatable cell-penetration strategy for enhanced tumor targeting and cytoplasmic delivery. Of note, site-specific modification is a big challenge in protein drug research, especially for such a complicated, multifunctional protein delivery system. We successfully develop a protocol for constructing a macromolecular prodrug system with intein-mediated ligation synthesis. With an on-column process of purification and intein-mediated cleavage, the site-specific PEGylation then can be readily achieved by conjugation with the activated C-terminus, thus constructing a PEG-capped, cell-penetrating trichosanthin system with a gelatinase-cleavable linker that enables tumor-specific activation of cytoplasmic delivery. It provides a promising method to address the PEG dilemma for enhanced protein drug delivery, and importantly, a facile protocol for site-specific modification of such a class of protein drugs for improving their druggability and industrial translation.


Assuntos
Sistemas de Liberação de Medicamentos/métodos , Gelatinases/química , Inteínas , Neoplasias Experimentais/química , Neoplasias Experimentais/tratamento farmacológico , Polietilenoglicóis/química , Tricosantina/administração & dosagem , Animais , Antineoplásicos Fitogênicos/administração & dosagem , Linhagem Celular Tumoral , Camundongos , Neoplasias Experimentais/patologia , Pró-Fármacos/administração & dosagem , Pró-Fármacos/química , Resultado do Tratamento
14.
ACS Nano ; 10(11): 9999-10012, 2016 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-27934069

RESUMO

Nutrient transporters have been explored for biomimetic delivery targeting the brain. The albumin-binding proteins (e.g., SPARC and gp60) are overexpressed in many tumors for transport of albumin as an amino acid and an energy source for fast-growing cancer cells. However, their application in brain delivery has rarely been investigated. In this work, SPARC and gp60 overexpression was found on glioma and tumor vessel endothelium; therefore, such pathways were explored for use in brain-targeting biomimetic delivery. We developed a green method for blood-brain barrier (BBB)-penetrating albumin nanoparticle synthesis, with the capacity to coencapsulate different drugs and no need for cross-linkers. The hydrophobic drugs (i.e., paclitaxel and fenretinide) yield synergistic effects to induce albumin self-assembly, forming dual drug-loaded nanoparticles. The albumin nanoparticles can penetrate the BBB and target glioma cells via the mechanisms of SPARC- and gp60-mediated biomimetic transport. Importantly, by modification with the cell-penetrating peptide LMWP, the albumin nanoparticles display enhanced BBB penetration, intratumoral infiltration, and cellular uptake. The LMWP-modified nanoparticles exhibited improved treatment outcomes in both subcutaneous and intracranial glioma models, with reduced toxic side effects. The therapeutic mechanisms were associated with induction of apoptosis, antiangiogenesis, and tumor immune microenvironment regulation. It provides a facile method for dual drug-loaded albumin nanoparticle preparation and a promising avenue for biomimetic delivery targeting the brain tumor based on combination therapy.


Assuntos
Albuminas/química , Neoplasias Encefálicas/tratamento farmacológico , Sistemas de Liberação de Medicamentos , Glioma/tratamento farmacológico , Animais , Biomimética , Encéfalo , Proteínas de Transporte , Linhagem Celular Tumoral , Camundongos Endogâmicos BALB C , Nanopartículas
15.
Acta Pharmacol Sin ; 37(8): 1110-20, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27292613

RESUMO

AIM: Drug efflux-associated multidrug resistance (MDR) is a main obstacle to effective cancer chemotherapy. Large molecule drugs are not the substrates of P-glycoprotein, and can circumvent drug efflux and be retained inside cells. In this article we report a polymer-drug conjugate nanoparticulate system that can overcome MDR based on size-related exclusion effect. METHODS: Doxorubicin was coupled with the triblock polymeric material cell-penetrating TAT-PEG-poly(aspartic acid). The amphiphilic macromolecules (termed TAT-PEG-Asp8-Dox) could self-assemble into nanoparticles (NPs) in water. The antitumor activity was evaluated in drug-resistant human colon cancer HCT8/ADR cells in vitro and in nude mice bearing HCT8/ADR tumor. RESULTS: The self-assembling TAT-PEG-Asp8-Dox NPs were approximately 150 nm with a narrow particle size distribution, which not only increased the cellular uptake efficiency, but also bypassed P-glycoprotein-mediated drug efflux and improved the intracellular drug retention, thus yielding an enhanced efficacy for killing drug-resistant HCT8/ADR colon cancer cells in vitro. Importantly, the TAT-PEG-Asp8-Dox NPs enhanced the intranuclear disposition of drugs for grater inhibition of DNA/RNA biosynthesis. In nude mice bearing xenografted HCT8/ADR colon cancers, intravenous or peritumoral injection of TAT-PEG-Asp8-Dox NPs for 22 d effectively inhibited tumor growth. CONCLUSION: TAT-PEG-Asp8-Dox NPs can increase cellular drug uptake and intranuclear drug delivery and retain effective drug accumulation inside the cells, thus exhibiting enhanced anticancer activity toward the drug-resistant human colon cancer HCT8/ADR cells.


Assuntos
Antineoplásicos/administração & dosagem , Doxorrubicina/farmacologia , Doxorrubicina/farmacocinética , Portadores de Fármacos/administração & dosagem , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Nanopartículas/administração & dosagem , Animais , Antineoplásicos/farmacocinética , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Peptídeos Penetradores de Células/química , DNA/biossíntese , Doxorrubicina/administração & dosagem , Portadores de Fármacos/farmacocinética , Humanos , Camundongos , Camundongos Nus , Nanopartículas/química , Tamanho da Partícula , Peptídeos/química , Polietilenoglicóis/química , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...