Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 965, 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38228687

RESUMO

Pressure-induced superconductivity often occurs following structural transition under hydrostatic pressure (PHP) but disappears after the pressure is released. In the alkali-earth metal barium, superconductivity appears after structural transformation from body-centered cubic structure to hexagonal-close-packed (hcp) structure at PHP = 5 GPa, and the superconducting transition temperature (Tc) reaches a maximum of 5 K at PHP = 18 GPa. Furthermore, by stabilizing the low-temperature phase at PHP ~ 30 GPa, Tc reached a higher level of 8 K. Herein, we demonstrate a significantly higher Tc superconductivity in Ba even at ambient pressure. This was made possible through severe plastic deformation of high-pressure torsion (HPT). In this HPT-processed Ba, we observed superconductivity at Tc = 3 K and Tc = 24 K in the quasi-stabilized hcp and orthorhombic structures, respectively. In particular, the latter Tc represents the highest value achieved at ambient pressure among single-element superconducting metals, including intermetallics. The phenomenon is attributed to a strained high-pressure phase, stabilized by residual strains generated from lattice defects such as dislocations and grain boundaries. Significantly, the observed Tc far exceeds predictions from DFT calculations under normal hydrostatic compressions. The study demonstrates the importance of utilizing high-pressure strained phases as quasi-stable superconducting states at ambient pressure.

3.
Front Microbiol ; 13: 918491, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35794915

RESUMO

The Qinghai-Tibet Plateau (QTP) is the highest plateau in the world, and its ultraviolet (UV) radiation is much greater than that of other regions in the world. Yellow mushroom (Floccularia luteovirens) is a unique and widely distributed edible fungus on the QTP. However, the molecular mechanism of F. luteovirens's response to strong UV radiation remains unclear. Herein, we reported the 205 environmental adaptation and information processing genes from genome of F. luteovirens. In addition, we assembled the RNA sequence of UV-affected F. luteovirens at different growth stages. The results showed that in response to strong UV radiation, a total of 11,871 significantly different genes were identified, of which 4,444 genes in the vegetative mycelium (VM) stage were significantly different from the young fruiting bodies (YFB) stage, and only 2,431 genes in the YFB stage were significantly different from fruiting bodies (FB) stage. A total of 225 differentially expressed genes (DEGs) were found to be involved in environmental signal transduction, biochemical reaction preparation and stress response pathway, pigment metabolism pathway, and growth cycle regulation, so as to sense UV radiation, promote repair damage, regulate intracellular homeostasis, and reduce oxidative damage of UV radiation. On the basis of these results, a molecular regulation model was proposed for the response of F. luteovirens to strong UV radiation. These results revealed the molecular mechanism of adaptation of F. luteovirens adapting to strong UV radiation, and provided novel insights into mechanisms of fungi adapting to extreme environmental conditions on the QTP; the production the riboflavin pigment of the endemic fungi (Yellow mushroom) in the QTP was one of the response to extreme environment of the strong UV radiation.

4.
Materials (Basel) ; 15(1)2022 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-35009477

RESUMO

Sheets of coarse-grained S304H austenitic steel were processed by high-pressure sliding (HPS) at room temperature and a ultrafine-grained microstructure with a mean grain size of about 0.14 µm was prepared. The microstructure changes and creep behavior of coarse-grained and HPS-processed steel were investigated at 500-700 °C under the application of different loads. It was found that the processing of S304H steel led to a significant improvement in creep strength at 500 °C. However, a further increase in creep temperature to 600 °C and 700 °C led to the deterioration of creep behavior of HPS-processed steel. The microstructure results suggest that the creep behavior of HPS-processed steel is associated with the thermal stability of the SPD-processed microstructure. The recrystallization, grain growth, the coarsening of precipitates led to a reduction in creep strength of the HPS-processed state. It was also observed that in the HPS-processed microstructure the fast formation of σ-phase occurs. The σ-phase was already formed during slight grain coarsening at 600 °C and its formation was enhanced after recrystallization at 700 °C.

5.
Front Microbiol ; 13: 1078663, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36643413

RESUMO

Introduction: Morchella has become a research hotspot because of its wide distribution, delicious taste, and phenotypic plasticity. The Qinghai-Tibet Plateau subkingdoms (QTPs) are known as the cradle of Ice age biodiversity. However, the diversity of Morchella in the QTPs has been poorly investigated, especially in phylogenetic diversity, origin, and biogeography. Methods: The genealogical concordance phylogenetic species recognition (GCPSR, based on Bayesian evolutionary analysis using sequences from the internal transcribed spacer (ITS), nuclear large subunit rDNA (nrLSU), translation elongation factor 1-α (EF1-α), and the largest and second largest subunits of RNA polymerase II (RPB1 and RPB2)), differentiation time estimation, and ancestral region reconstruction were used to infer Morchella's phylogenetic relationships and historical biogeography in the QTPs. Results: Firstly, a total of 18 Morchella phylogenetic species are recognized in the QTPs, including 10 Elata clades and 8 Esculenta clades of 216 individuals Secondly, the divergences of the 18 phylogenetic species were 50.24-4.20 Mya (Eocene-Pliocene), which was closely related to the geological activities in the QTPs. Furthermore, the ancestor of Morchella probably originated in the Northern regions (Qilian Shan, Elata cade) and southwestern regions (Shangri-La, Esculenta clade) of QTPs and might have migrated from North America (Rufobrunnea clade) via Beringian Land Bridge (BLB) and Long-Distance Dispersal (LDD) expansions during the Late Cretaceous. Moreover, as the cradle of species origin and diversity, the fungi species in the QTPs have spread out and diffused to Eurasia and South Africa starting in the Paleogene Period. Conclusion: This is the first report that Esculenta and Elata clade of Morchella originated from the QTPs because of orogenic, and rapid differentiation of fungi is strongly linked to geological uplift movement and refuge in marginal areas of the QTPs. Our findings contribute to increasing the diversity of Morchella and offer more evidence for the origin theory of the QTPs.

6.
Materials (Basel) ; 13(23)2020 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-33255598

RESUMO

Martensitic creep-resistant P92 steel was deformed by different methods of severe plastic deformation such as rotation swaging, high-pressure sliding, and high-pressure torsion at room temperature. These methods imposed significantly different equivalent plastic strains of about 1-30. It was found that rotation swaging led to formation of heterogeneous microstructures with elongated grains where low-angle grain boundaries predominated. Other methods led to formation of ultrafine-grained (UFG) microstructures with high frequency of high-angle grain boundaries. Constant load tensile creep tests at 873 K and initial stresses in the range of 50 to 300 MPa revealed that the specimens processed by rotation swaging exhibited one order of magnitude lower minimum creep rate compared to standard P92 steel. By contrast, UFG P92 steel is significantly softer than standard P92 steel, but differences in their strengths decrease with increasing stress. Microstructural results suggest that creep behavior of P92 steel processed by severe plastic deformation is influenced by the frequency of high-angle grain boundaries and dynamic grain coarsening during creep.

7.
Mater Sci Eng C Mater Biol Appl ; 112: 110908, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32409062

RESUMO

Despite significant studies on mechanical properties of high-entropy alloys (HEAs), there have been limited attempts to examine the biocompatibility of these alloys. In this study, a lattice-softened high-entropy alloy TiAlFeCoNi with ultrahigh hardness (examined by Vickers method), low elastic modulus (examined by nanoindentation) and superior activity for cell proliferation/viability/cytotoxicity (examined by MTT assay) was developed by employing imperial data and thermodynamic calculations. The designated alloy after casting was processed further by high-pressure torsion (HPT) to improve its hardness via the introduction of nanograins, dislocations and order-disorder transformation. The TiAlFeCoNi alloy with the L21-BCC crystal structure exhibited 170-580% higher hardness and 260-1020% better cellular metabolic activity compared to titanium and Ti-6Al-7Nb biomaterials, suggesting the high potential of HEAs for future biomedical applications.


Assuntos
Ligas/química , Materiais Biocompatíveis/química , Ligas/farmacologia , Alumínio/química , Animais , Materiais Biocompatíveis/farmacologia , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Cobalto/química , Módulo de Elasticidade , Entropia , Dureza , Ferro/química , Camundongos , Níquel/química , Resistência à Tração , Titânio/química
8.
Nanoscale Res Lett ; 8(1): 445, 2013 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-24164860

RESUMO

Cu2O flower/grass-like nanoarchitectures (FGLNAs) were fabricated directly on two category specimens of Cu foils and Cu film using thermal oxidation method. The FGLNAs are approximately 3.5 to 12 µm in size, and their petals are approximately 50 to 950 nm in width. The high compressive stress caused by a large oxide volume in the Cu2O layer on the specimen surface played an important role in the growth of FGLNAs. The effects of surface conditions, such as the surface stresses, grain size, and surface roughness of Cu foil and Cu film specimens, on the FGLNA growth were discussed in detail. PACS: 81. Materials science; 81.07.-b Nanoscale materials and structures: fabrication and characterization; 81.16.Hc Catalytic methods.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...