Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 22(4)2021 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-33670757

RESUMO

The GATA proteins, functioning as transcription factors (TFs), are involved in multiple plant physiological and biochemical processes. In this study, 28 GATA TFs of Brachypodium distachyon (BdGATA) were systematically characterized via whole-genome analysis. BdGATA genes unevenly distribute on five chromosomes of B. distachyon and undergo purifying selection during the evolution process. The putative cis-acting regulatory elements and gene interaction network of BdGATA were found to be associated with hormones and defense responses. Noticeably, the expression profiles measured by quantitative real-time PCR indicated that BdGATA genes were sensitive to methyl jasmonate (MeJA) and salicylic acid (SA) treatment, and 10 of them responded to invasion of the fungal pathogen Magnaporthe oryzae, which causes rice blast disease. Genome-wide characterization, evolution, and expression profile analysis of BdGATA genes can open new avenues for uncovering the functions of the GATA genes family in plants and further improve the knowledge of cellular signaling in plant defense.


Assuntos
Brachypodium/genética , Evolução Molecular , Fatores de Transcrição GATA/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Genoma de Planta , Motivos de Aminoácidos , Ascomicetos/efeitos dos fármacos , Ascomicetos/fisiologia , Brachypodium/efeitos dos fármacos , Cromossomos de Plantas/genética , Sequência Conservada/genética , Fatores de Transcrição GATA/química , Fatores de Transcrição GATA/metabolismo , Duplicação Gênica , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Redes Reguladoras de Genes/efeitos dos fármacos , Genes de Plantas , MicroRNAs/genética , MicroRNAs/metabolismo , Filogenia , Reguladores de Crescimento de Plantas/farmacologia , Sintenia/genética
2.
Entropy (Basel) ; 22(2)2020 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-33285923

RESUMO

A field experiment was conducted to investigate the combined application effects of fly ash (FA) (0, 5%, 10%, and 15% (w/w) soil) and polyacrylamide (PAM) (0, 0.006% and 0.012% (w/w) soil) on the edge of Hobq Desert in Inner Mongolia, China from May 2016 to October 2018. Seven different ratios of FA and PAM were selected as evaluation objects, a total of 14 soil property indices and 9 Artemisia ordosica growth indices were selected as evaluation indicators, and the entropy weight method was employed to evaluate the soil physicochemical properties and vegetation growth performances under FA and PAM amendments. The results showed that the F15P1 (15% FA + 0.006% PAM) and F5P1 (5% FA + 0.006% PAM) were the effective treatments for soil improvement and Artemisia ordosica growth respectively. Considering the soil properties and Artemisia ordosica growth in 2016-2018 synthetically, the highest score was observed in the F5P1, followed by the F5P2 (5% FA + 0.012% PAM) and F10P1 (10% FA + 0.006% PAM) treatments. The optimal amounts for FA and PAM should be recommended as 5% and 0.006%, respectively.

3.
Plants (Basel) ; 9(10)2020 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-33036140

RESUMO

Brachypodium distachyon, as an effective model of cereal grains, is susceptible to most destructive cereal pathogens. Senescence associated gene 101 (SAG101) has been studied extensively in Arabidopsis. SAG101 is one of the important regulators of plant immunity. However, no homologous genes of AtSAG101 were found in B. distachyon. In this study, the AtSAG101 gene was transformed into B. distachyon. Three transgenic plant lines containing the AtSAG101 gene were confirmed by PCR and GUS gene activity. There were fewer Puccinia brachypodii urediospores in the AtSAG101-overexpressing plants compared to wild type plants. P. brachypodii biomass was obviously decreased in AtSAG101 transgenic plants. The length of infection hyphae and infection unit areas of P. brachypodii were significantly limited in transgenic plants. Moreover, there were small lesions in AtSAG101 transgenic plants challenged by Magnaporthe oryzae. Salicylic acid accumulation was significantly increased, which led to elevated pathogenesis-related gene expression in transgenic B. distachyon inoculated by P. brachypodii or M. oryzae compared to wild type plants. These results were consistent with infected phenotypes. Overexpression of AtSAG101 in B. distachyon caused resistance to M. oryzae and P. brachypodii. These results suggest that AtSAG101 could regulate plant resistance in B. distachyon.

4.
Materials (Basel) ; 7(8): 5992-6009, 2014 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-28788173

RESUMO

A new high strain rate forming process for titanium alloys is presented and named High Pressure Pneumatic Forming (HPPF), which might be applicable to form certain tubular components with irregular cross sections with high efficiency, both with respect to energy cost and time consumption. HPPF experiments were performed on Ti-3Al-2.5V titanium alloy tubes using a square cross-sectional die with a small corner radius. The effects of forming of pressure and temperature on the corner filling were investigated and the thickness distributions after the HPPF processes at various pressure levels are discussed. At the same time, the stress state, strain and strain rate distribution during the HPPF process were numerically analyzed by the finite element method. Microstructure evolution of the formed tubes was also analyzed by using electron back scattering diffraction (EBSD). Because of different stress states, the strain and strain rate are very different at different areas of the tube during the corner filling process, and consequently the microstructure of the formed component is affected to some degree. The results verified that HPPF is a potential technology to form titanium tubular components with complicated geometrical features with high efficiency.

5.
Environ Monit Assess ; 145(1-3): 185-93, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-18085418

RESUMO

In recent years, high-molecular-weight anionic polyacrylamide (PAM) have been widely tested on a variety of soils, primarily in water erosion control. However, little information is available regarding the effectiveness of PAM on preventing soil loss from wind erosion. The research adopted room wind tunnel experiment, two kinds of soils were used which were from the agro-pastoral area of Inner Mongolia, the northwest of China, the clay content of soils were 22.0 and 13.7%, respectively. For these tests, all the treatments were performed under the condition of wind velocity of 14 m s(-1) and a blown angle of 8.75%, according to the actual situation of experimented area. The study results indicated that using PAM on the soil surface could enhance the capability of avoiding the wind erosion, at the same time, the effect of controlling wind soil erosion with 4 g m(-2) PAM was better than 2 g m(-2) PAM's. Economically, the 2 g m(-2) PAM used in soil surface can control wind erosion effectively in this region. The prophase PAM accumulated in soil could not improve the capability of avoiding the wind erosion, owing to the degradation of PAM in the soil and the continual tillage year after year. The texture of soil is a main factor influencing the capability of soil avoiding wind erosion. Soil with higher clay content has the higher capability of preventing soil from wind erosion than one with the opposite one under the together action of PAM and water.


Assuntos
Resinas Acrílicas , Solo , Vento , Peso Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA