Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Biomed Eng ; 7(12): 1636-1648, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37735541

RESUMO

Portable assays for the rapid identification of lineages of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are needed to aid large-scale efforts in monitoring the evolution of the virus. Here we report a multiplexed assay in a microarray format for the detection, via isothermal amplification and plasmonic-gold-enhanced near-infrared fluorescence, of variants of SARS-CoV-2. The assay, which has single-nucleotide specificity for variant discrimination, single-RNA-copy sensitivity and does not require RNA extraction, discriminated 12 lineages of SARS-CoV-2 (in three mutational hotspots of the Spike protein) and detected the virus in nasopharyngeal swabs from 1,034 individuals at 98.8% sensitivity and 100% specificity, with 97.6% concordance with genome sequencing in variant discrimination. We also report a compact, portable and fully automated device integrating the entire swab-to-result workflow and amenable to the point-of-care detection of SARS-CoV-2 variants. Portable, rapid, accurate and multiplexed assays for the detection of SARS-CoV-2 variants and lineages may facilitate variant-surveillance efforts.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Bioensaio , COVID-19/diagnóstico , RNA , SARS-CoV-2/genética , Fluorescência
2.
Artigo em Inglês | MEDLINE | ID: mdl-35472714

RESUMO

As an emerging biomarker, cell-free DNA (cfDNA) carries crucial genetic information for the diagnosis of hereditary disease and cancer. However, test accuracy was severely compromised by the low abundance of cell-free DNA in peripheral blood, frequently diluted by genomic DNA released from white blood cells, resulting in sample rejection, test inaccuracy, and restricted clinical utility. Herein we report a novel strategy for the efficient recovery of cfDNA with significant removal of genomic DNA contamination during the cfDNA extraction process, based on a nano-magnetic size selective cfDNA extraction platform. With this platform, over 90% cfDNA recovery rate was achieved with minimal genomic DNA contamination. For non-invasive prenatal testing, an increase of fetal fraction from 10.10% to 29.94% medially was observed in 11 maternal plasma samples, with two false-negative samples identified by the proposed workflow. Enrichment of cfDNA in plasma sample of cancer patient demonstrated âˆ¼ 100% increase of circulating tumor DNA (ctDNA) percentage by panel sequencing of specific mutation sites. The approach is simple, automatable and cost-efficient, can improve liquid biopsy precision and reduce sequencing depth through significant enrichment of target abundance. The nano-magnetic platform demonstrated its potential application in liquid biopsy, since it exhibited numerous advantages in avoiding false negative results, reducing sequencing cost, improving data quality, and rescuing contaminated samples.


Assuntos
Ácidos Nucleicos Livres , DNA Tumoral Circulante , Neoplasias , DNA Tumoral Circulante/genética , DNA , Feminino , Humanos , Biópsia Líquida/métodos , Mutação , Gravidez
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...