Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 82
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Bioeng Biotechnol ; 12: 1347953, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38646011

RESUMO

Introduction: Protease activity can serve as a highly specific biomarker for application in health, biotech, and beyond. The aim of this study was to develop a protease cleavable synthetic protein platform to detect protease activity in a rapid cell-free setting. Methods: The protease sensor is modular, with orthogonal peptide tags at the N and C terminal ends, which can be uncoupled via a protease responsive module located in between. The sensor design allows for several different readouts of cleavage signal. A protein 'backbone' [Green fluorescent protein (GFP)] was designed in silico to have both a C-terminal Flag-tag and N-Terminal 6x histidine tag (HIS) for antibody detection. A protease cleavage site, which can be adapted for any known protease cleavage sequence, enables the uncoupling of the peptide tags. Three different proteases-Tobacco, Etch Virus (TEV), the main protease from coronavirus SARS-COV-2 (Mpro) and Matrix Metallopeptidase 9 (MMP9)-a cancer-selective human protease-were examined. A sandwich Enzyme-Linked Immunosorbent Assay (ELISA) was developed based on antibodies against the HIS and Flag tags. As an alternative readout, a C-terminal quencher peptide separable by protease cleavage from the GFP was also included. Purified proteins were deployed in cell-free cleavage assays with their respective protease. Western blots, fluorescence assays and immunoassay were performed on samples. Results: Following the design, build and validation of protein constructs, specific protease cleavage was initially demonstrated by Western blot. The novel ELISA proved to afford highly sensitive detection of protease activity in all cases. By way of alternative readout, activation of fluorescence signal upon protease cleavage was also demonstrated but did not match the sensitivity provided by the ELISA method. Discussion: This platform, comprising a protease-responsive synthetic protein device and accompanying readout, is suitable for future deployment in a rapid, low-cost, lateral flow setting. The modular protein device can readily accommodate any desired protease-response module (target protease cleavage site). This study validates the concept with three disparate proteases and applications-human infectious disease, cancer and agricultural crop infection.

2.
Sci Rep ; 13(1): 18732, 2023 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-37907625

RESUMO

Monitoring of tissue O2 is essential for cancer development and treatment, as hypoxic tumour regions develop resistance to radio- and chemotherapy. We describe a minimally invasive technique for the monitoring of tissue oxygenation in developing grafted tumours, which uses the new phosphorescence lifetime based Tpx3Cam imager. CT26 cells stained with a near-infrared emitting nanoparticulate O2 probe NanO2-IR were injected into mice to produce grafted tumours with characteristic phosphorescence. The tumours were allowed to develop for 3, 7, 10 and 17 days, with O2 imaging experiments performed on live and euthanised animals at different time points. Despite a marked trend towards decreased O2 in dead animals, their tumour areas produced phosphorescence lifetime values between 44 and 47 µs, which corresponded to hypoxic tissue with 5-20 µM O2. After the O2 imaging in animals, confocal Phosphorescence Lifetime Imaging Microscopy was conducted to examine the distribution of NanO2-IR probe in the tumours, which were excised, fixed and sliced for the purpose. The probe remained visible as bright and discrete 'islands' embedded in the tumour tissue until day 17 of tumour growth. Overall, this O2 macro-imaging method using NanO2-IR holds promise for long-term studies with grafted tumours in live animal models, providing quantitative 2D mapping of tissue O2.


Assuntos
Neoplasias , Oxigênio , Camundongos , Animais , Oxigênio/análise , Hipóxia , Neoplasias/diagnóstico por imagem
3.
J Vis Exp ; (194)2023 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-37092825

RESUMO

This paper presents a new photoluminescence lifetime imager designed to map the molecular oxygen (O2) concentration in different phosphorescent samples ranging from solid-state, O2-sensitive coatings to live animal tissue samples stained with soluble O2-sensitive probes. In particular, the nanoparticle-based near-infrared probe NanO2-IR, which is excitable with a 625 nm light-emitting diode (LED) and emits at 760 nm, was used. The imaging system is based on the Timepix3 camera (Tpx3Cam) and the opto-mechanical adaptor, which also houses an image intensifier. O2 phosphorescence lifetime imaging microscopy (PLIM) is commonly required for various studies, but current platforms have limitations in their accuracy, general flexibility, and usability. The system presented here is a fast and highly sensitive imager, which is built on an integrated optical sensor and readout chip module, Tpx3Cam. It is shown to produce high-intensity phosphorescence signals and stable lifetime values from surface-stained intestinal tissue samples or intraluminally stained fragments of the large intestine and allows the detailed mapping of tissue O2 levels in about 20 s or less. Initial experiments on the imaging of hypoxia in grafted tumors in unconscious animals are also presented. We also describe how the imager can be re-configured for use with O2-sensitive materials based on Pt-porphyrin dyes using a 390 nm LED for the excitation and a bandpass 650 nm filter for emission. Overall, the PLIM imager was found to produce accurate quantitative measurements of lifetime values for the probes used and respective two-dimensional maps of the O2 concentration. It is also useful for the metabolic imaging of ex vivo tissue models and live animals.


Assuntos
Hipóxia , Oxigênio , Animais , Fluorescência , Oxigênio/metabolismo , Intestinos , Diagnóstico por Imagem
4.
Expert Rev Mol Med ; 25: e15, 2023 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-37009688

RESUMO

Breast cancer was the most commonly diagnosed cancer worldwide in 2020. Greater understanding of the factors which promote tumour progression, metastatic development and therapeutic resistance is needed. In recent years, a distinct microbiome has been detected in the breast, a site previously thought to be sterile. Here, we review the clinical and molecular relevance of the oral anaerobic bacterium Fusobacterium nucleatum in breast cancer. F. nucleatum is enriched in breast tumour tissue compared with matched healthy tissue and has been shown to promote mammary tumour growth and metastatic progression in mouse models. Current literature suggests that F. nucleatum modulates immune escape and inflammation within the tissue microenvironment, two well-defined hallmarks of cancer. Furthermore, the microbiome, and F. nucleatum specifically, has been shown to affect patient response to therapy including immune checkpoint inhibitors. These findings highlight areas of future research needed to better understand the influence of F. nucleatum in the development and treatment of breast cancer.


Assuntos
Neoplasias Colorretais , Fusobacterium nucleatum , Animais , Camundongos , Fusobacterium nucleatum/genética , Composição de Bases , Filogenia , RNA Ribossômico 16S , Análise de Sequência de DNA , Microambiente Tumoral
5.
Front Oncol ; 12: 1020121, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36505861

RESUMO

Bacterial inhabitants of the body have the potential to play a role in various stages of cancer initiation, progression, and treatment. These bacteria may be distal to the primary tumour, such as gut microbiota, or local to the tissue, before or after tumour growth. Breast cancer is well studied in this context. Amongst breast cancer types, Triple Negative Breast Cancer (TNBC) is more aggressive, has fewer treatment options than receptor-positive breast cancers, has an overall worse prognosis and higher rates of reoccurrence. Thus, an in-depth understanding of the bacterial influence on TNBC progression and treatment is of high value. In this regard, the Gut Microbiota (GM) can be involved in various stages of tumour progression. It may suppress or promote carcinogenesis through the release of carcinogenic metabolites, sustenance of proinflammatory environments and/or the promotion of epigenetic changes in our genome. It can also mediate metastasis and reoccurrence through interactions with the immune system and has been recently shown to influence chemo-, radio-, and immune-therapies. Furthermore, bacteria have also been found to reside in normal and malignant breast tissue. Several studies have now described the breast and breast tumour microbiome, with the tumour microbiota of TNBC having the least taxonomic diversity among all breast cancer types. Here, specific conditions of the tumour microenvironment (TME) - low O2, leaky vasculature and immune suppression - are supportive of tumour selective bacterial growth. This innate bacterial ability could enable their use as delivery agents for various therapeutics or as diagnostics. This review aims to examine the current knowledge on bacterial relevance to TNBC and potential uses while examining some of the remaining unanswered questions regarding mechanisms underpinning observed effects.

7.
Biomolecules ; 12(8)2022 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-36008952

RESUMO

A Crohn's-like lymphoid reaction (CLR) is observed in about 15% of colorectal cancer (CRC) patients and is associated with favourable outcomes. To identify the immune targets recognised by CRC CLR patient sera, we immunoscreened a testes cDNA library with sera from three patients. Immunoscreening of the 18 antigens identified by SEREX with sera from normal donors showed that only the heavy chain of IgG3 (IGHG3) and a novel antigen we named UOB-COL-7, were solely recognised by sera from CRC CLR patients. ELISA showed an elevation in IgG3 levels in patients with CRC (p = 0.01). To extend our studies we analysed the expression of our SEREX-identified antigens using the RNA-sequencing dataset (GSE5206). We found that the transcript levels of multiple IGHG probesets were highly significant (p < 0.001) in their association with clinical features of CRC while above median levels of DAPK1 (p = 0.005) and below median levels of GTF2H5 (p = 0.004) and SH3RF2 (p = 0.02) were associated with improved overall survival. Our findings demonstrate the potential of SEREX-identified CRC CLR antigens to act as biomarkers for CRC and provide a rationale for their further characterization and validation.


Assuntos
Neoplasias Colorretais , Doença de Crohn , Proteínas de Transporte/genética , Doença de Crohn/genética , Biblioteca Gênica , Humanos , Imunoglobulina G/genética , Proteínas Oncogênicas/genética
8.
Front Artif Intell ; 5: 875587, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35757294

RESUMO

This paper presents a short summary of the protein folding problem, what it is and why it is significant. Introduces the CASP competition and how accuracy is measured. Looks at different approaches for solving the problem followed by a review of the current breakthroughs in the field introduced by AlphaFold 1 and AlphaFold 2.

9.
Sci Rep ; 11(1): 18535, 2021 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-34535726

RESUMO

Considerable recent research has indicated the presence of bacteria in a variety of human tumours and matched normal tissue. Rather than focusing on further identification of bacteria within tumour samples, we reversed the hypothesis to query if establishing the bacterial profile of a tissue biopsy could reveal its histology / malignancy status. The aim of the present study was therefore to differentiate between malignant and non-malignant fresh breast biopsy specimens, collected specifically for this purpose, based on bacterial sequence data alone. Fresh tissue biopsies were obtained from breast cancer patients and subjected to 16S rRNA gene sequencing. Progressive microbiological and bioinformatic contamination control practices were imparted at all points of specimen handling and bioinformatic manipulation. Differences in breast tumour and matched normal tissues were probed using a variety of statistical and machine-learning-based strategies. Breast tumour and matched normal tissue microbiome profiles proved sufficiently different to indicate that a classification strategy using bacterial biomarkers could be effective. Leave-one-out cross-validation of the predictive model confirmed the ability to identify malignant breast tissue from its bacterial signature with 84.78% accuracy, with a corresponding area under the receiver operating characteristic curve of 0.888. This study provides proof-of-concept data, from fit-for-purpose study material, on the potential to use the bacterial signature of tissue biopsies to identify their malignancy status.


Assuntos
Bactérias/isolamento & purificação , Neoplasias da Mama/microbiologia , Mama/microbiologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Bactérias/genética , Biópsia , Mama/patologia , Neoplasias da Mama/diagnóstico , Neoplasias da Mama/patologia , Feminino , Genômica , Humanos , Aprendizado de Máquina , Masculino , Pessoa de Meia-Idade , RNA Ribossômico 16S/genética
10.
Front Bioeng Biotechnol ; 9: 674211, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34055764

RESUMO

Proteins mediate and perform various fundamental functions of life. This versatility of protein function is an attribute of its 3D structure. In recent years, our understanding of protein 3D structure has been complemented with advances in computational and mathematical tools for protein modelling and protein design. 3D molecular visualisation is an essential part in every protein design and protein modelling workflow. Over the years, stand-alone and web-based molecular visualisation tools have been used to emulate three-dimensional view on computers. The advent of virtual reality provided the scope for immersive control of molecular visualisation. While these technologies have significantly improved our insights into protein modelling, designing new proteins with a defined function remains a complicated process. Current tools to design proteins lack user-interactivity and demand high computational skills. In this work, we present the Pepblock Builder VR, a gaming-based molecular visualisation tool for bio-edutainment and understanding protein design. Simulating the concepts of protein design and incorporating gaming principles into molecular visualisation promotes effective game-based learning. Unlike traditional sequence-based protein design and fragment-based stitching, the Pepblock Builder VR provides a building block style environment for complex structure building. This provides users a unique visual structure building experience. Furthermore, the inclusion of virtual reality to the Pepblock Builder VR brings immersive learning and provides users with "being there" experience in protein visualisation. The Pepblock Builder VR works both as a stand-alone and VR-based application, and with a gamified user interface, the Pepblock Builder VR aims to expand the horizons of scientific data generation to the masses.

11.
Trends Biotechnol ; 39(7): 651-664, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33139074

RESUMO

Proteins mediate many essential processes of life to a degree of functional precision unmatched by any synthetic device. While engineered proteins are currently used in biotech, food, biomedicine, and material technology-based industries, the true potential of proteins is practically untapped. The emerging field of in silico protein design is predicted to provide the next quantum leap in the biotech industry. Having predictive control over protein function and the ability to redefine these functions have driven the field of protein engineering into an era of unprecedented development. This article provides a holistic analysis of protein design R&D (current state-of-the-art tools and knowhow) and commercial landscape, as well as a one-stop-shop profile of in silico protein design technology for biotechnology stakeholders.


Assuntos
Biotecnologia , Proteínas , Biotecnologia/tendências , Simulação por Computador , Engenharia de Proteínas , Proteínas/genética , Pesquisa/tendências
12.
Sci Rep ; 10(1): 16356, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-33004967

RESUMO

The targeted sequencing of the 16S rRNA gene is one of the most frequently employed techniques in the field of microbial ecology, with the bacterial communities of a wide variety of niches in the human body have been characterised in this way. This is performed by targeting one or more hypervariable (V) regions within the 16S rRNA gene in order to produce an amplicon suitable in size for next generation sequencing. To date, all technical research has focused on the ability of different V regions to accurately resolve the composition of bacterial communities. We present here an underreported artefact associated with 16S rRNA gene sequencing, namely the off-target amplification of human DNA. By analysing 16S rRNA gene sequencing data from a selection of human sites we highlighted samples susceptible to this off-target amplification when using the popular primer pair targeting the V3-V4 region of the gene. The most severely affected sample type identified (breast tumour samples) were then re-analysed using the V1-V2 primer set, showing considerable reduction in off target amplification. Our data indicate that human biopsy samples should preferably be amplified using primers targeting the V1-V2 region. It is shown here that these primers result in on average 80% less human genome aligning reads, allowing for more statistically significant analysis of the bacterial communities residing in these samples.


Assuntos
DNA Bacteriano/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , RNA Ribossômico 16S/análise , Análise de Sequência de DNA/métodos , Bactérias/genética , Neoplasias da Mama/genética , Feminino , Humanos
13.
Biol Methods Protoc ; 5(1): bpaa015, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33072872

RESUMO

Formalin-fixed, paraffin-embedded (FFPE) specimens have huge potential as source material in the field of human microbiome research. However, the effects of FFPE processing on bacterial DNA remain uncharacterized. Any effects are relevant for microbiome studies, where DNA template is often minimal and sequences studied are not limited to one genome. As such, we aimed to both characterize this FFPE-induced bacterial DNA damage and develop strategies to reduce and repair this damage. Our analyses indicate that bacterial FFPE DNA is highly fragmented, a poor template for PCR, crosslinked and bears sequence artefacts derived predominantly from oxidative DNA damage. Two strategies to reduce this damage were devised - an optimized decrosslinking procedure reducing sequence artefacts generated by high-temperature incubation, and secondly, an in vitro reconstitution of the base excision repair pathway. As evidenced by whole genome sequencing, treatment with these strategies significantly increased fragment length, reduced the appearance of sequence artefacts and improved the sequencing readability of bacterial and mammalian FFPE DNA. This study provides a new understanding of the condition of bacterial DNA in FFPE specimens and how this impacts downstream analyses, in addition to a strategy to improve the sequencing quality of bacterial and possibly mammalian FFPE DNA.

14.
BMC Mol Cell Biol ; 21(1): 75, 2020 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-33126861

RESUMO

BACKGROUND: Many cell permeabilisation methods to mediate internalisation of various molecules to mammalian or bacterial cells have been developed. However, no size-specific permeability assay suitable for both cell types exists. RESULTS: We report the use of intrinsically biotinylated cell components as the target for reporter molecules for assessing permeabilisation. Due to its well-described biotin binding activity, we developed an assay using Streptavidin (SAv) as a molecular weight marker for assessing eukaryotic and prokaryotic cell internalisation, using flow cytometry as a readout. This concept was tested here as part of the development of host DNA depletion strategies for microbiome analysis of formalin-fixed (FF) samples. Host depletion (HD) strategies require differential cell permeabilisation, where mammalian cells but not bacterial cells are permeabilised, and are subsequently treated with a nuclease. Here, the internalisation of a SAv-conjugate was used as a reference for nucleases of similar dimensions. With this assay, it was possible to demonstrate that formalin fixation does not generate pores which allow the introduction of 60 KDa molecules in mammalian or bacterial membranes/envelopes. Among surfactants tested, Saponin derived from Quillaja bark showed the best selectivity for mammalian cell permeabilisation, which, when coupled with Benzonase nuclease, provided the best results for host DNA depletion, representing a new HD strategy for formalin fixed samples. CONCLUSION: The assay presented provides researchers with a sensitive and accessible tool for discerning membrane/cell envelop permeability for different size macromolecules.


Assuntos
Biotina/química , Membrana Celular/metabolismo , DNA/metabolismo , Escherichia coli/metabolismo , Citometria de Fluxo/métodos , Substâncias Macromoleculares/metabolismo , Estreptavidina/química , Animais , Biotinilação , Linhagem Celular Tumoral , Formaldeído , Técnicas In Vitro , Camundongos , Peso Molecular , Permeabilidade , Saponinas/farmacologia
15.
EMBO Rep ; 21(9): e50587, 2020 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-32869903

RESUMO

Synthetic biology has the potential to seed research in impoverished countries. Teaching students and academics has to take into account reality - lessons from Honduras.


Assuntos
Países em Desenvolvimento , Estudantes , Biotecnologia , Honduras , Humanos , Ensino
16.
Microbiome ; 8(1): 122, 2020 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-32828122

RESUMO

BACKGROUND: Formalin-fixed, paraffin-embedded (FFPE) tissue is the gold standard in pathology tissue storage, representing the largest collections of patient material. Their reliable use for DNA analyses could open a trove of potential samples for research and are currently being recognised as a viable source material for bacterial analysis. There are several key features which limit bacterial-related data generation from this material: (i) DNA damage inherent to the fixing process, (ii) low bacterial biomass that increases the vulnerability to contamination and exacerbates the host DNA effects and (iii) lack of suitable DNA extraction methods, leading to data bias. The development and systematic use of reliable standards is a key priority for microbiome research. More than perhaps any other sample type, FFPE material urgently requires the development of standards to ensure the validity of results and to promote reproducibility. RESULTS: To address these limitations and concerns, we have developed the Protoblock as a biological standard for FFPE tissue-based research and method optimisation. This is a novel system designed to generate bespoke mock FFPE 'blocks' with a cell content that is user-defined and which undergoes the same treatment conditions as clinical FFPE tissues. The 'Protoblock' features a mix of formalin-fixed cells, of known number, embedded in an agar matrix which is solidified to form a defined shape that is paraffin embedded. The contents of various Protoblocks populated with mammalian and bacterial cells were verified by microscopy. The quantity and condition of DNA purified from blocks was evaluated by qPCR, 16S rRNA gene amplicon sequencing and whole genome sequencing. These analyses validated the capability of the Protoblock system to determine the extent to which each of the three stated confounding features impacts on eventual analysis of cellular DNA present in FFPE samples. CONCLUSION: The Protoblock provides a representation of biological material after FFPE treatment. Use of this standard will greatly assist the stratification of biological variations detected into those legitimately resulting from experimental conditions, and those that are artefacts of the processed nature of the samples, thus enabling users to relate the outputs of laboratory analyses to reality. Video Abstract.


Assuntos
Formaldeído , Fixação de Tecidos/normas , Animais , Bactérias/isolamento & purificação , Viés , Biomassa , Dano ao DNA , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Microbiota , Inclusão em Parafina/normas , Padrões de Referência , Reprodutibilidade dos Testes
17.
Front Oncol ; 10: 179, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32154174

RESUMO

Tumors are hospitable environments to bacteria and several recent studies on cancer patient samples have introduced the concept of an endogenous tumor microbiome. For a variety of reasons, this putative tumor microbiome is particularly challenging to investigate, and a failure to account for the various potential pitfalls will result in erroneous results and claims. Before this potentially extremely medically-significant habitat can be accurately characterized, a clear understanding of all potential confounding factors is required, and a best-practice approach should be developed and adopted. This review summarizes all of the potential issues confounding accurate bacterial DNA sequence analysis of the putative tumor microbiome, and offers solutions based on related research with the hope of assisting in the progression of research in this field.

18.
Proteins ; 88(3): 462-475, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31589780

RESUMO

Protein engineering and synthetic biology stand to benefit immensely from recent advances in silico tools for structural and functional analyses of proteins. In the context of designing novel proteins, current in silico tools inform the user on individual parameters of a query protein, with output scores/metrics unique to each parameter. In reality, proteins feature multiple "parts"/functions and modification of a protein aimed at altering a given part, typically has collateral impact on other protein parts. A system for prediction of the combined effect of design parameters on the overall performance of the final protein does not exist. Function2Form Bridge (F2F-Bridge) attempts to address this by combining the scores of different design parameters pertaining to the protein being analyzed into a single easily interpreted output describing overall performance. The strategy comprises of (a) a mathematical strategy combining data from a myriad of in silico tools into an OP-score (a singular score informing on a user-defined overall performance) and (b) the F2F Plot, a graphical means of informing the wetlab biologist holistically on designed construct suitability in the context of multiple parameters, highlighting scope for improvement. F2F predictive output was compared with wetlab data from a range of synthetic proteins designed, built, and tested for this study. Statistical/machine learning approaches for predicting overall performance, for use alongside the F2F plot, were also examined. Comparisons between wetlab performance and F2F predictions demonstrated close and reliable correlations. This user-friendly strategy represents a pivotal enabler in increasing the accessibility of synthetic protein building and de novo protein design.


Assuntos
Anticorpos/química , Coagulase/química , Aprendizado de Máquina , Mucina-1/química , Biologia Sintética/métodos , Anticorpos/metabolismo , Coagulase/metabolismo , Humanos , Modelos Estatísticos , Mucina-1/metabolismo , Engenharia de Proteínas/métodos , Staphylococcus aureus/química , Relação Estrutura-Atividade
19.
Anal Chem ; 91(19): 12329-12335, 2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31479232

RESUMO

Continuous monitoring of bacterial growth in aqueous media is a crucial process in academic research as well as in the biotechnology industry. Bacterial growth is usually monitored by measuring the optical density of bacteria in liquid media, using benchtop spectrophotometers. Due to the large form factor of the existing spectrophotometers, they cannot be used for live monitoring of the bacteria inside bacterial incubation chambers. Additionally, the use of benchtop spectrometers for continuous monitoring requires multiple samplings and is labor intensive. To overcome these challenges, we have developed an optical density measuring device (ODX) by modifying a generic fitness tracker. The resulting ODX device is an ultraportable and low-cost device that can be used inside bacterial incubators for real-time monitoring even while shaking is in progress. We evaluated the performance of ODX with different bacterial types and growth conditions and compared it with a commercial benchtop spectrophotometer. In all cases, ODX showed comparable performance to that of the standard benchtop spectrophotometer. Finally, we demonstrate a simple and useful smartphone application whereby the user is notified when the bacterial concentration reaches the targeted value. Due to its potential for automation and mass production, we believe that the ODX has a wide range of applications in biotechnology research and industry.


Assuntos
Bactérias/crescimento & desenvolvimento , Bacteriologia/instrumentação , Dispositivos Ópticos , Bacteriologia/economia , Calibragem , Custos e Análise de Custo , Desenho de Equipamento , Fenômenos Mecânicos , Dispositivos Ópticos/economia , Impressão Tridimensional
20.
ISME J ; 13(11): 2664-2680, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31239540

RESUMO

The relationship between bacterial communities and their host is being extensively investigated for the potential to improve the host's health. Little is known about the interplay between the microbiota of parasites and the health of the infected host. Using nematode co-infection of lambs as a proof-of-concept model, the aim of this study was to characterise the microbiomes of nematodes and that of their host, enabling identification of candidate nematode-specific microbiota member(s) that could be exploited as drug development tools or for targeted therapy. Deep sequencing techniques were used to elucidate the microbiomes of different life stages of two parasitic nematodes of ruminants, Haemonchus contortus and Teladorsagia circumcincta, as well as that of the co-infected ovine hosts, pre- and post infection. Bioinformatic analyses demonstrated significant differences between the composition of the nematode and ovine microbiomes. The two nematode species also differed significantly. The data indicated a shift in the constitution of the larval nematode microbiome after exposure to the ovine microbiome, and in the ovine intestinal microbial community over time as a result of helminth co-infection. Several bacterial species were identified in nematodes that were absent from their surrounding abomasal environment, the most significant of which included Escherichia coli/Shigella. The ability to purposefully infect nematode species with engineered E. coli was demonstrated in vitro, validating the concept of using this bacterium as a nematode-specific drug development tool and/or drug delivery vehicle. To our knowledge, this is the first description of the concept of exploiting a parasite's microbiome for drug development and treatment purposes.


Assuntos
Haemonchus/microbiologia , Microbiota , Nematoides/microbiologia , Infecções por Nematoides/parasitologia , Doenças dos Ovinos/parasitologia , Abomaso/microbiologia , Animais , Bactérias/classificação , Biodiversidade , Modelos Animais de Doenças , Escherichia coli/genética , Engenharia Genética , Sequenciamento de Nucleotídeos em Larga Escala , Infecções por Nematoides/terapia , Infecções por Nematoides/veterinária , Ovinos , Doenças dos Ovinos/terapia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...