Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 97
Filtrar
2.
J Am Heart Assoc ; 10(6): e018999, 2021 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-33719498

RESUMO

Background Mounting evidence suggests that circulating microRNAs (miRNAs) are critical indicators of cardiovascular disease. However, prospective studies linking circulating miRNAs to incident acute coronary syndrome (ACS) are limited, and the underlying effect of associated miRNA on incident ACS remains unknown. Methods and Results Based on a 2-stage prospective nested case-control design within the Dongfeng-Tongji cohort, we profiled plasma miRNAs from 23 pairs of incident ACS cases and controls by microarray and validated the candidate miRNAs in 572 incident ACS case-control pairs using quantitative real-time polymerase chain reaction. We observed that plasma miR-4286 was associated with higher risk of ACS (adjusted odds ratio according to an interquartile range increase, 1.26 [95% CI, 1.07-1.48]). Further association analysis revealed that triglyceride was positively associated with plasma miR-4286, and an interquartile range increase in triglyceride was associated with an 11.04% (95% CI, 3.77%-18.83%) increase in plasma miR-4286. In addition, the Mendelian randomization analysis suggested a potential causal effect of triglyceride on plasma miR-4286 (ß coefficients: 0.27 [95% CI, 0.01-0.53] and 0.27 [95% CI, 0.07-0.47] separately by inverse variance-weighted and Mendelian randomization-pleiotropy residual sum and outlier tests). Moreover, the causal mediation analysis indicated that plasma miR-4286 explained 5.5% (95% CI, 0.7%-17.0%) of the association of triglyceride with incident ACS. Conclusions Higher level of plasma miR-4286 was associated with an increased risk of ACS. The upregulated miR-4286 in plasma can be attributed to higher triglyceride level and may mediate the effect of triglyceride on incident ACS.


Assuntos
Síndrome Coronariana Aguda/sangue , MicroRNA Circulante/sangue , MicroRNAs/genética , Regulação para Cima , Síndrome Coronariana Aguda/epidemiologia , Síndrome Coronariana Aguda/genética , Idoso , Biomarcadores/sangue , Estudos de Casos e Controles , China/epidemiologia , MicroRNA Circulante/genética , Feminino , Humanos , Incidência , Masculino , MicroRNAs/sangue , Estudos Prospectivos
3.
Cell Stress Chaperones ; 26(1): 265-274, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32888179

RESUMO

The small heat shock proteins (sHsps) are a ubiquitous family of ATP-independent stress proteins found in all domains of life. Drosophila melanogaster Hsp27 (DmHsp27) is the only known nuclear sHsp in insect. Here analyzing sequences from HMMER, we identified 56 additional insect sHsps with conserved arginine-rich nuclear localization signal (NLS) in the N-terminal region. At this time, the exact role of nuclear sHsps remains unknown. DmHsp27 protein-protein interaction analysis from iRefIndex database suggests that this protein, in addition to a putative role of molecular chaperone, is likely involved in other nuclear processes (i.e., chromatin remodeling and transcription). Identification of DmHsp27 interactors should provide key insights on the cellular and molecular functions of this nuclear chaperone.


Assuntos
Proteínas de Choque Térmico Pequenas/metabolismo , Proteínas de Insetos/metabolismo , Insetos/metabolismo , Animais , Proteínas de Drosophila/química , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/química , Drosophila melanogaster/metabolismo , Proteínas de Choque Térmico Pequenas/química , Proteínas de Insetos/química , Insetos/química , Mapas de Interação de Proteínas
4.
Cell Stress Chaperones ; 25(4): 629-637, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32314314

RESUMO

Small heat shock proteins (sHsps) are ubiquitous molecular chaperones found in all domains of life, possessing significant roles in protein quality control in cells and assisting the refolding of non-native proteins. They are efficient chaperones against many in vitro protein substrates. Nevertheless, the in vivo native substrates of sHsps are not known. To better understand the functions of sHsps and the mechanisms by which they enhance heat resistance, sHsp-interacting proteins were identified using affinity purification under heat shock conditions. This paper aims at providing some insights into the characteristics of natural substrate proteins of sHsps. It seems that sHsps of prokaryotes, as well as sHsps of some eukaryotes, can bind to a wide range of substrate proteins with a preference for certain functional classes of proteins. Using Drosophila melanogaster mitochondrial Hsp22 as a model system, we observed that this sHsp interacted with the members of ATP synthase machinery. Mechanistically, Hsp22 interacts with the multi-type substrate proteins under heat shock conditions as well as non-heat shock conditions.


Assuntos
Proteínas de Drosophila , Proteínas de Choque Térmico Pequenas , Proteínas de Choque Térmico , Animais , Proteínas de Drosophila/química , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Proteínas de Choque Térmico/química , Proteínas de Choque Térmico/metabolismo , Proteínas de Choque Térmico Pequenas/química , Proteínas de Choque Térmico Pequenas/metabolismo , Resposta ao Choque Térmico , Especificidade por Substrato
5.
Mol Genet Metab ; 127(1): 58-63, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30954369

RESUMO

Hereditary tyrosinemia type 1 (HT1), the most severe disease of the tyrosine catabolic pathway, is caused by a deficiency of fumarylacetoacetate hydrolase (FAH). More than 90 disease-causing variants have been identified in the fah gene. We investigated the molecular defect in a patient who presented atypical symptoms for the disease. No immunoreactive FAH was found in the liver and RNA analysis by RT-PCR suggested the presence of splicing mutations. Indeed, the patient was revealed to be a compound heterozygote for IVS6-1 g- > t and two new variants, namely p.V259L and p.G398E. Using splicing minigene constructs transfected in HeLa cells, the c.775G > C variant (p.V259L) was shown to affect partially exon 9 splicing thereby allowing the production of some full-length double-mutant FAH transcripts. The p.G398E variant had a major impact on enzyme activity, which was worsened by the p.V259L variant. Surprisingly, the double mutant protein was expressed to similar level as the wild-type protein upon transfection in HeLa cells but was absent in the patient liver extract, suggesting a higher propensity to be degraded in the hepatocellular context.


Assuntos
Hidrolases/genética , Mutação , Tirosinemias/genética , Alelos , Biópsia , Éxons , Feminino , Células HeLa , Humanos , Lactente , Fígado/patologia , Splicing de RNA
6.
Front Genet ; 10: 130, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30842791

RESUMO

Mitochondrial and nuclear genomes have to coevolve to ensure the proper functioning of the different mitochondrial complexes that are assembled from peptides encoded by both genomes. Mismatch between these genomes is believed to be strongly selected against due to the consequent impairments of mitochondrial functions and induction of oxidative stress. Here, we used a Drosophila model harboring an incompatibility between a mitochondrial tRNAtyr and its nuclear-encoded mitochondrial tyrosine synthetase to assess the cellular mechanisms affected by this incompatibility and to test the relative contribution of mitonuclear interactions and aging on the expression of impaired phenotypes. Our results show that the mitochondrial tRNA mutation caused a decrease in mitochondrial oxygen consumption in the incompatible nuclear background but no effect with the compatible nuclear background. Mitochondrial DNA copy number increased in the incompatible genotype but that increase failed to rescue mitochondrial functions. The flies harboring mismatch between nuclear and mitochondrial genomes had almost three times the relative mtDNA copy number and fifty percent higher rate of hydrogen peroxide production compared to other genome combinations at 25 days of age. We also found that aging exacerbated the mitochondrial dysfunctions. Our results reveal the tight interactions linking mitonuclear mismatch to mitochondrial dysfunction, mitochondrial DNA regulation, ROS production and aging.

7.
Cell Stress Chaperones ; 24(2): 295-308, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30758704

RESUMO

Small Heat Shock Proteins (sHSPs) evolved early in the history of life; they are present in archaea, bacteria, and eukaryota. sHSPs belong to the superfamily of molecular chaperones: they are components of the cellular protein quality control machinery and are thought to act as the first line of defense against conditions that endanger the cellular proteome. In plants, sHSPs protect cells against abiotic stresses, providing innovative targets for sustainable agricultural production. In humans, sHSPs (also known as HSPBs) are associated with the development of several neurological diseases. Thus, manipulation of sHSP expression may represent an attractive therapeutic strategy for disease treatment. Experimental evidence demonstrates that enhancing the chaperone function of sHSPs protects against age-related protein conformation diseases, which are characterized by protein aggregation. Moreover, sHSPs can promote longevity and healthy aging in vivo. In addition, sHSPs have been implicated in the prognosis of several types of cancer. Here, sHSP upregulation, by enhancing cellular health, could promote cancer development; on the other hand, their downregulation, by sensitizing cells to external stressors and chemotherapeutics, may have beneficial outcomes. The complexity and diversity of sHSP function and properties and the need to identify their specific clients, as well as their implication in human disease, have been discussed by many of the world's experts in the sHSP field during a dedicated workshop in Québec City, Canada, on 26-29 August 2018.


Assuntos
Proteínas de Choque Térmico Pequenas , Envelhecimento/metabolismo , Evolução Molecular , Proteínas de Choque Térmico Pequenas/química , Proteínas de Choque Térmico Pequenas/metabolismo , Proteínas de Choque Térmico Pequenas/fisiologia , Humanos , Neoplasias/metabolismo , Doenças do Sistema Nervoso/metabolismo , Plantas/metabolismo , Conformação Proteica
8.
PLoS One ; 13(3): e0193771, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29509794

RESUMO

The small heat shock protein (sHsp) Hsp22 from Drosophila melanogaster (DmHsp22) is part of the family of sHsps in this diptera. This sHsp is characterized by its presence in the mitochondrial matrix as well as by its preferential expression during ageing. Although DmHsp22 has been demonstrated to be an efficient in vitro chaperone, its function within mitochondria in vivo remains largely unknown. Thus, determining its protein-interaction network (interactome) in the mitochondrial matrix would help to shed light on its function(s). In the present study we combined immunoaffinity conjugation (IAC) with mass spectroscopy analysis of mitochondria from HeLa cells transfected with DmHsp22 in non-heat shock condition and after heat shock (HS). 60 common DmHsp22-binding mitochondrial partners were detected in two independent IACs. Immunoblotting was used to validate interaction between DmHsp22 and two members of the mitochondrial chaperone machinery; Hsp60 and Hsp70. Among the partners of DmHsp22, several ATP synthase subunits were found. Moreover, we showed that expression of DmHsp22 in transiently transfected HeLa cells increased maximal mitochondrial oxygen consumption capacity and ATP contents, providing a mechanistic link between DmHsp22 and mitochondrial functions.


Assuntos
Proteínas de Drosophila/metabolismo , Proteínas de Choque Térmico/metabolismo , Homeostase/fisiologia , Mitocôndrias/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Drosophila melanogaster , Imunofluorescência , Células HeLa , Humanos , Immunoblotting , Espectrometria de Massas , ATPases Mitocondriais Próton-Translocadoras/metabolismo , Consumo de Oxigênio/fisiologia , Termotolerância/fisiologia , Transfecção
9.
Adv Exp Med Biol ; 959: 9-21, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28755181

RESUMO

Inborn errors of metabolism (IEMs) are a group of diseases involving a genetic defect that alters a metabolic pathway and that presents usually during infancy. The tyrosine degradation pathway contains five enzymes, four of which being associated with IEMs. The most severe metabolic disorder associated with this catabolic pathway is hereditary tyrosinemia type 1 (HT1; OMIM 276700). HT1 is an autosomal recessive disease caused by a deficiency of fumarylacetoacetate hydrolase (FAH), the last enzyme of the tyrosine catabolic pathway. Although a rare disease worldwide, HT1 shows higher incidence in certain populations due to founder effects. The acute form of the disease is characterized by an early onset and severe liver failure while the chronic form appears later and also involves renal dysfunctions. Until 1992 the only treatment for this disease was liver transplantation. Since then, NTBC/Nitisone (a drug blocking the pathway upstream of FAH) is successfully used in combination with a diet low in tyrosine and phenylalanine, but patients are still at risk of developing hepatocellular carcinoma. This chapter summarizes the biochemical and clinical features of HT1.


Assuntos
Tirosinemias/metabolismo , Tirosinemias/patologia , Cicloexanonas/uso terapêutico , Humanos , Rim/metabolismo , Rim/patologia , Fígado/metabolismo , Fígado/patologia , Falência Hepática/metabolismo , Falência Hepática/patologia , Nitrobenzoatos/uso terapêutico , Tirosina/genética , Tirosinemias/tratamento farmacológico , Tirosinemias/genética
10.
Adv Exp Med Biol ; 959: 25-48, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28755182

RESUMO

Hereditary tyrosinemia type 1 (HT1) is caused by the lack of fumarylacetoacetate hydrolase (FAH), the last enzyme of the tyrosine catabolic pathway. Up to now, around 100 mutations in the FAH gene have been associated with HT1, and despite many efforts, no clear correlation between genotype and clinical phenotype has been reported. At first, it seems that any mutation in the gene results in HT1. However, placing these mutations in their molecular context allows a better understanding of their possible effects. This chapter presents a closer look at the FAH gene and its corresponding protein in addition to provide a complete record of all the reported mutations causing HT1.


Assuntos
Hidrolases/genética , Mutação/genética , Tirosinemias/genética , Sequência de Aminoácidos , Animais , Genótipo , Humanos , Alinhamento de Sequência , Tirosina/metabolismo , Tirosinemias/metabolismo
11.
Adv Exp Med Biol ; 959: 49-64, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28755183

RESUMO

Untreated HT1 rapidly degenerates into very severe liver complications often resulting in liver cancer. The molecular basis of the pathogenic process in HT1 is still unclear. The murine model of FAH-deficiency is a suitable animal model, which represents all phenotypic and biochemical manifestations of the human disease on an accelerated time scale. After removal of the drug 2-(2-N-4-trifluoromethylbenzoyl)-1,3-cyclohexanedione (NTBC), numerous signaling pathways involved in cell proliferation, differentiation and cancer are rapidly deregulated in FAH deficient mice. Among these, the Endoplasmic reticulum (ER) pathway, the heat stress response (HSR), the Nrf2, MEK and ERK pathways, are highly represented. The p21 and mTOR pathways critical regulators of proliferation and tumorigenesis have also been found to be dysregulated. The changes in these pathways are described and related to the development of liver cancer.


Assuntos
Hidrolases/metabolismo , Hepatopatias/metabolismo , Fígado/metabolismo , Tirosinemias/metabolismo , Animais , Cicloexanonas/farmacologia , Humanos , Hepatopatias/etiologia , Nitrobenzoatos/farmacologia , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , Tirosinemias/complicações , Tirosinemias/tratamento farmacológico
12.
PLoS One ; 12(5): e0177821, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28520783

RESUMO

The importance of the N-terminal region (NTR) in the oligomerization and chaperone-like activity of the Drosophila melanogaster small nuclear heat shock protein DmHsp27 was investigated by mutagenesis using size exclusion chromatography and native gel electrophoresis. Mutation of two sites of phosphorylation in the N-terminal region, S58 and S75, did not affect the oligomerization equilibrium or the intracellular localization of DmHsp27 when transfected into mammalian cells. Deletion or mutation of specific residues within the NTR region delineated a motif (FGFG) important for the oligomeric structure and chaperone-like activity of this sHsp. While deletion of the full N-terminal region, resulted in total loss of chaperone-like activity, removal of the (FGFG) at position 29 to 32 or single mutation of F29A/Y, G30R and G32R enhanced oligomerization and chaperoning capacity under non-heat shock conditions in the insulin assay suggesting the importance of this site for chaperone activity. Unlike mammalian sHsps DmHsp27 heat activation leads to enhanced association of oligomers to form large structures of approximately 1100 kDa. A new mechanism of thermal activation for DmHsp27 is presented.


Assuntos
Proteínas de Drosophila/química , Proteínas de Choque Térmico/química , Substituição de Aminoácidos , Animais , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Ligação Proteica , Domínios Proteicos , Multimerização Proteica , Transporte Proteico
13.
Cell Stress Chaperones ; 22(4): 601-611, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28364346

RESUMO

Small heat shock proteins (sHSPs) are present in all kingdoms of life and play fundamental roles in cell biology. sHSPs are key components of the cellular protein quality control system, acting as the first line of defense against conditions that affect protein homeostasis and proteome stability, from bacteria to plants to humans. sHSPs have the ability to bind to a large subset of substrates and to maintain them in a state competent for refolding or clearance with the assistance of the HSP70 machinery. sHSPs participate in a number of biological processes, from the cell cycle, to cell differentiation, from adaptation to stressful conditions, to apoptosis, and, even, to the transformation of a cell into a malignant state. As a consequence, sHSP malfunction has been implicated in abnormal placental development and preterm deliveries, in the prognosis of several types of cancer, and in the development of neurological diseases. Moreover, mutations in the genes encoding several mammalian sHSPs result in neurological, muscular, or cardiac age-related diseases in humans. Loss of protein homeostasis due to protein aggregation is typical of many age-related neurodegenerative and neuromuscular diseases. In light of the role of sHSPs in the clearance of un/misfolded aggregation-prone substrates, pharmacological modulation of sHSP expression or function and rescue of defective sHSPs represent possible routes to alleviate or cure protein conformation diseases. Here, we report the latest news and views on sHSPs discussed by many of the world's experts in the sHSP field during a dedicated workshop organized in Italy (Bertinoro, CEUB, October 12-15, 2016).


Assuntos
Proteínas de Choque Térmico Pequenas/química , Proteínas de Choque Térmico Pequenas/metabolismo , Animais , Cardiopatias/metabolismo , Humanos , Doenças Musculares/metabolismo , Doenças Neurodegenerativas/metabolismo , Agregados Proteicos , Conformação Proteica , Mapas de Interação de Proteínas
14.
Cell Stress Chaperones ; 22(4): 577-588, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28389817

RESUMO

The structure and chaperone function of DmHsp22WT, a small Hsp of Drosophila melanogaster localized within mitochondria were examined. Mutations of conserved arginine mutants within the alpha-crystallin domain (ACD) domain (R105G, R109G, and R110G) were introduced, and their effects on oligomerization and chaperone function were assessed. Arginine to glycine mutations do not induce significant changes in tryptophan fluorescence, and the mutated proteins form oligomers that are of equal or smaller size than the wild-type protein. They all form oligomer with one single peak as determined by size exclusion chromatography. While all mutants demonstrate the same efficiency as the DmHsp22WT in a DTT-induced insulin aggregation assay, all are more efficient chaperones to prevent aggregation of malate dehydrogenase. Arginine mutants of DmHsp22 are efficient chaperones to retard aggregation of CS and Luc. In summary, this study shows that mutations of arginine to glycine in DmHsp22 ACD induce a number of structural changes, some of which differ from those described in mammalian sHsps. Interestingly, only the R110G-DmHsp22 mutant, and not the expected R109G equivalent to human R140-HspB1, R116-HspB4, and R120-HspB5, showed different structural properties compared with the DmHsp22WT.


Assuntos
Arginina/química , Proteínas de Drosophila/química , Drosophila melanogaster/química , Proteínas de Choque Térmico/química , Proteínas Mitocondriais/química , alfa-Cristalinas/química , Sequência de Aminoácidos , Animais , Arginina/genética , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Proteínas de Choque Térmico/genética , Proteínas Mitocondriais/genética , Mutação Puntual , Conformação Proteica , Multimerização Proteica , Alinhamento de Sequência , alfa-Cristalinas/genética
15.
Cell Stress Chaperones ; 22(4): 455-466, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-27933579

RESUMO

The small Hsp DmHsp27 from Drosophila melanogaster is one of the few small heat shock proteins (sHsps) found within the nucleus. We report that its dimerization is independent of disulfide bond formation and seems to rely on salt bridges. Unlike metazoan sHsps, DmHsp27 forms two populations of oligomers not in equilibrium. Mutations at highly conserved arginine residues in mammalian sHsps have been reported to be associated with protein conformational defects and intracellular aggregation. Independent mutation of three highly conserved arginines (R122, R131, and R135) to glycine in DmHsp27 results in only one population of higher molecular weight form. In vitro, the chaperone-like activity of wild-type DmHsp27 was comparable with that of its two isolated populations and to the single population of the R122G, R131G, and R135G using luciferase as substrate. However, using insulin, the chaperone-like activity of wild-type DmHsp27 was lower than that of R122G and R131G mutants. Altogether, the results characterize wild-type DmHsp27 and its alpha-crystallin domain (ACD) arginine mutants and may give insight into protection mechanism of sHsps.


Assuntos
Proteínas de Drosophila/química , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Proteínas de Choque Térmico/química , Proteínas de Choque Térmico/metabolismo , alfa-Cristalinas/química , Sequência de Aminoácidos , Animais , Proteínas de Drosophila/genética , Drosophila melanogaster/química , Drosophila melanogaster/genética , Proteínas de Choque Térmico/genética , Modelos Moleculares , Mutação Puntual , Conformação Proteica , Domínios Proteicos , Multimerização Proteica
16.
PLoS One ; 11(9): e0162233, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27643500

RESUMO

We previously reported the in silico characterization of Synechococcus sp. phage 18 kDa small heat shock protein (HspSP-ShM2). This small heat shock protein (sHSP) contains a highly conserved core alpha crystalline domain of 92 amino acids and relatively short N- and C-terminal arms, the later containing the classical C-terminal anchoring module motif (L-X-I/L/V). Here we establish the oligomeric profile of HspSP-ShM2 and its structural dynamics under in vitro experimental conditions using size exclusion chromatography (SEC/FPLC), gradient native gels electrophoresis and dynamic light scattering (DLS). Under native conditions, HspSP-ShM2 displays the ability to form large oligomers and shows a polydisperse profile. At higher temperatures, it shows extensive structural dynamics and undergoes conformational changes through an increased of subunit rearrangement and formation of sub-oligomeric species. We also demonstrate its capacity to prevent the aggregation of citrate synthase, malate dehydrogenase and luciferase under heat shock conditions through the formation of stable and soluble hetero-oligomeric complexes (sHSP:substrate). In contrast, the host cyanobacteria Synechococcus sp. WH7803 15 kDa sHSP (HspS-WH7803) aggregates when in the same conditions as HspSP-ShM2. However, its solubility can be maintained in the presence of non-ionic detergent Triton™X-100 and forms an oligomeric structure estimated to be between dimer and tetramer but exhibits no apparent inducible structural dynamics neither chaperon-like activity in all the assays and molar ratios tested. SEC/FPLC and thermal aggregation prevention assays results indicate no formation of hetero-oligomeric complex or functional interactions between both sHSPs. Taken together these in vitro results portray the phage HspSP-ShM2 as a classical sHSP and suggest that it may be functional at the in vivo level while behaving differently than its host amphitropic sHSP.


Assuntos
Proteínas de Bactérias/química , Bacteriófagos/química , Proteínas de Choque Térmico Pequenas/química , Synechococcus/química , Synechococcus/virologia , Proteínas Virais/química , Proteínas de Bactérias/metabolismo , Bacteriófagos/metabolismo , Proteínas de Choque Térmico Pequenas/metabolismo , Agregados Proteicos , Conformação Proteica , Multimerização Proteica , Solubilidade , Synechococcus/metabolismo , Proteínas Virais/metabolismo
17.
Sci Rep ; 6: 27464, 2016 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-27282650

RESUMO

Hereditary tyrosinemia type 1 (HT1) is a severe inborn error of metabolism, impacting the tyrosine catabolic pathway with a high incidence of hepatocellular carcinoma (HCC). Using a HT1 murine model, we investigated the changes in profiles of circulating and hepatic miRNAs. The aim was to determine if plasma miRNAs could be used as non-invasive markers of liver damage in HT1 progression. Plasma and liver miRNAome was determined by deep sequencing after HT1 phenotype was induced. Sequencing analysis revealed deregulation of several miRNAs including let-7/miR-98 family, miR-21 and miR-148a, during manifestation of liver pathology. Three miRNAs (miR-98, miR-200b, miR-409) presenting the highest plasmatic variations among miRNAs found in both plasma and liver and with >1000 reads in at least one plasma sample, were further validated by RT-qPCR. Two of these miRNAs have protein targets involved in HT1 and significant changes in their circulating levels are detectable prior an increase in protein expression of alpha-fetoprotein, the current biomarker for HCC diagnosis. Future assessment of these miRNAs in HT1 patients and their association with liver neoplastic lesions might designate these molecules as potential biomarkers for monitoring HT1 damage progression, improving diagnosis for early HCC detection and the design of novel therapeutic targets.


Assuntos
MicroRNA Circulante/genética , Neoplasias Hepáticas/sangue , Neoplasias Hepáticas/genética , Fígado/patologia , Tirosinemias/sangue , Tirosinemias/genética , Animais , Biomarcadores Tumorais/sangue , Carcinoma Hepatocelular/sangue , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Modelos Animais de Doenças , Progressão da Doença , Regulação Neoplásica da Expressão Gênica/genética , Neoplasias Hepáticas/patologia , Masculino , Camundongos , Tirosinemias/patologia , alfa-Fetoproteínas/genética
19.
Mech Ageing Dev ; 155: 36-47, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26930296

RESUMO

Hsp22 is a small mitochondrial heat shock protein (sHSP) preferentially up-regulated during aging in Drosophila melanogaster. Its developmental expression is strictly regulated and it is rapidly induced in conditions of stress. Hsp22 is one of the few sHSP to be localized inside mitochondria, and is the first sHSP to be involved in the mitochondrial unfolding protein response (UPR(MT)) together with Hsp60, mitochondrial Hsp70 and TRAP1. The UPR(MT) is a pro-longevity mechanism, and interestingly Hsp22 over-expression by-itself increases lifespan and resistance to stress. To unveil the effect of Hsp22 on the mitochondrial proteome, comparative IEF/SDS polyacrylamide 2D gels were done on mitochondria from Hsp22+ flies and controls. Among the proteins influenced by Hsp22 expression were proteins from the electron transport chain (ETC), the TCA cycle and mitochondrial Hsp70. Hsp22 co-migrates with ETC components and its over-expression is associated with an increase in mitochondrial protease activity. Interestingly, the only protease that showed significant changes upon Hsp22 over-expression in the comparative IEF/SDS-PAGE analysis was cathepsin D, which is localized in mitochondria in addition to lysosome in D. melanogaster as evidenced by cellular fractionation. Together the results are consistent with a role of Hsp22 in the UPR(MT) and in mitochondrial proteostasis.


Assuntos
Catepsina D/metabolismo , Proteínas de Drosophila/metabolismo , Proteínas de Choque Térmico/metabolismo , Longevidade/fisiologia , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Resposta a Proteínas não Dobradas/fisiologia , Animais , Catepsina D/genética , Proteínas de Drosophila/genética , Drosophila melanogaster , Proteínas de Choque Térmico/genética , Mitocôndrias/genética , Proteínas Mitocondriais/genética
20.
Cell Stress Chaperones ; 21(3): 373-8, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26847234

RESUMO

The Seventh International Congress of the Cell Stress Society International (CSSI) was held as a joint meeting with the newly organized committee of Stress Physiology, the Chinese Association for Physiological Sciences (CAPS). There were over 200 colleagues and their students in attendance from 22 different countries. The topics of the congress were core scientific areas in the field of stress and health. The keynote speakers were Fu-Chu He (China), E.R. (Ron) de Kloet (The Netherlands), and Kazuhiro Nagata (Japan). The CSSI Medallion for Career Achievement in the cell stress and chaperones field was awarded to Kazutoshi Mori (Japan). Twelve student post awards were given in recognition of a very high quality poster session. In the tradition of this series of congresses, cultural events were an important part of the program. In addition, participants became better acquainted during trips to the ancient shopping street, an evening at the Chinese opera, and a lesson in Tai Chi from a master. The first groups of CSSI Fellows and Senior Fellows were presented their rosettes and certificates during the congress.


Assuntos
Chaperonas Moleculares/genética , Estresse Fisiológico/genética , China , Humanos , Estresse Fisiológico/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...