Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cancer Res Commun ; 4(5): 1174-1188, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38626341

RESUMO

p16 is a tumor suppressor encoded by the CDKN2A gene whose expression is lost in approximately 50% of all human cancers. In its canonical role, p16 inhibits the G1-S-phase cell cycle progression through suppression of cyclin-dependent kinases. Interestingly, p16 also has roles in metabolic reprogramming, and we previously published that loss of p16 promotes nucleotide synthesis via the pentose phosphate pathway. However, the broader impact of p16/CDKN2A loss on other nucleotide metabolic pathways and potential therapeutic targets remains unexplored. Using CRISPR knockout libraries in isogenic human and mouse melanoma cell lines, we determined several nucleotide metabolism genes essential for the survival of cells with loss of p16/CDKN2A. Consistently, many of these genes are upregulated in melanoma cells with p16 knockdown or endogenously low CDKN2A expression. We determined that cells with low p16/CDKN2A expression are sensitive to multiple inhibitors of de novo purine synthesis, including antifolates. Finally, tumors with p16 knockdown were more sensitive to the antifolate methotrexate in vivo than control tumors. Together, our data provide evidence to reevaluate the utility of these drugs in patients with p16/CDKN2Alow tumors as loss of p16/CDKN2A may provide a therapeutic window for these agents. SIGNIFICANCE: Antimetabolites were the first chemotherapies, yet many have failed in the clinic due to toxicity and poor patient selection. Our data suggest that p16 loss provides a therapeutic window to kill cancer cells with widely-used antifolates with relatively little toxicity.


Assuntos
Inibidor p16 de Quinase Dependente de Ciclina , Purinas , Animais , Humanos , Camundongos , Linhagem Celular Tumoral , Inibidor p16 de Quinase Dependente de Ciclina/genética , Inibidor p16 de Quinase Dependente de Ciclina/metabolismo , Regulação Neoplásica da Expressão Gênica , Melanoma/genética , Melanoma/metabolismo , Melanoma/patologia , Metotrexato/farmacologia , Purinas/metabolismo , Antagonistas do Ácido Fólico/farmacologia , Antagonistas do Ácido Fólico/uso terapêutico
2.
bioRxiv ; 2024 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-38370789

RESUMO

Homologous recombination (HR) deficiency enhances sensitivity to DNA damaging agents commonly used to treat cancer. In HR-proficient cancers, metabolic mechanisms driving response or resistance to DNA damaging agents remain unclear. Here we identified that depletion of alpha-ketoglutarate (αKG) sensitizes HR-proficient cells to DNA damaging agents by metabolic regulation of histone acetylation. αKG is required for the activity of αKG-dependent dioxygenases (αKGDDs), and prior work has shown that changes in αKGDD affect demethylases. Using a targeted CRISPR knockout library consisting of 64 αKGDDs, we discovered that Trimethyllysine Hydroxylase Epsilon (TMLHE), the first and rate-limiting enzyme in de novo carnitine synthesis, is necessary for proliferation of HR-proficient cells in the presence of DNA damaging agents. Unexpectedly, αKG-mediated TMLHE-dependent carnitine synthesis was required for histone acetylation, while histone methylation was affected but dispensable. The increase in histone acetylation via αKG-dependent carnitine synthesis promoted HR-mediated DNA repair through site- and substrate-specific histone acetylation. These data demonstrate for the first time that HR-proficiency is mediated through αKG directly influencing histone acetylation via carnitine synthesis and provide a metabolic avenue to induce HR-deficiency and sensitivity to DNA damaging agents.

3.
bioRxiv ; 2023 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-37961201

RESUMO

DNA damage and cellular metabolism are intricately linked with bidirectional feedback. Two of the main effectors of the DNA damage response and control of cellular metabolism are ATR and mTORC1, respectively. Prior work has placed ATR upstream of mTORC1 during replication stress, yet the direct mechanism for how mTORC1 is activated in this context remain unclear. We previously published that p16-low cells have mTORC1 hyperactivation, which in part promotes their proliferation. Using this model, we found that ATR, but not ATM, is upstream of mTORC1 activation via de novo cholesterol synthesis and is associated with increased lanosterol synthase (LSS). Indeed, p16-low cells showed increased cholesterol abundance. Additionally, knockdown of either ATR or LSS decreased mTORC1 activity. Decreased mTORC1 activity due to ATR knockdown was rescued by cholesterol supplementation. Finally, using both LSS inhibitors and multiple FDA-approved de novo cholesterol synthesis inhibitors, we found that the de novo cholesterol biosynthesis pathway is a metabolic vulnerability of p16-low cells. Together, our data provide new evidence coupling the DNA damage response and cholesterol metabolism and demonstrate the feasibility of using FDA-approved cholesterol-lowering drugs in tumors with loss of p16.

4.
bioRxiv ; 2023 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-37503050

RESUMO

p16 is a tumor suppressor encoded by the CDKN2A gene whose expression is lost in ~50% of all human cancers. In its canonical role, p16 inhibits the G1-S phase cell cycle progression through suppression of cyclin dependent kinases. Interestingly, p16 also has roles in metabolic reprogramming, and we previously published that loss of p16 promotes nucleotide synthesis via the pentose phosphate pathway. Whether other nucleotide metabolic genes and pathways are affected by p16/CDKN2A loss and if these can be specifically targeted in p16/CDKN2A-low tumors has not been previously explored. Using CRISPR KO libraries in multiple isogenic human and mouse melanoma cell lines, we determined that many nucleotide metabolism genes are negatively enriched in p16/CDKN2A knockdown cells compared to controls. Indeed, many of the genes that are required for survival in the context of low p16/CDKN2A expression based on our CRISPR screens are upregulated in p16 knockdown melanoma cells and those with endogenously low CDKN2A expression. We determined that cells with low p16/Cdkn2a expression are sensitive to multiple inhibitors of de novo purine synthesis, including anti-folates. Tumors with p16 knockdown were more sensitive to the anti-folate methotrexate in vivo than control tumors. Together, our data provide evidence to reevaluate the utility of these drugs in patients with p16/CDKN2A-low tumors as loss of p16/CDKN2A may provide a therapeutic window for these agents.

5.
J Cell Biol ; 222(1)2023 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-36399181

RESUMO

Macropinocytosis is a nonspecific endocytic process that may enhance cancer cell survival under nutrient-poor conditions. Ataxia-Telangiectasia mutated (ATM) is a tumor suppressor that has been previously shown to play a role in cellular metabolic reprogramming. We report that the suppression of ATM increases macropinocytosis to promote cancer cell survival in nutrient-poor conditions. Combined inhibition of ATM and macropinocytosis suppressed proliferation and induced cell death both in vitro and in vivo. Supplementation of ATM-inhibited cells with amino acids, branched-chain amino acids (BCAAs) in particular, abrogated macropinocytosis. Analysis of ATM-inhibited cells in vitro demonstrated increased BCAA uptake, and metabolomics of ascites and interstitial fluid from tumors indicated decreased BCAAs in the microenvironment of ATM-inhibited tumors. These data reveal a novel basis of ATM-mediated tumor suppression whereby loss of ATM stimulates protumorigenic uptake of nutrients in part via macropinocytosis to promote cancer cell survival and reveal a potential metabolic vulnerability of ATM-inhibited cells.


Assuntos
Proteínas Mutadas de Ataxia Telangiectasia , Neoplasias , Pinocitose , Humanos , Adaptação Fisiológica , Proteínas Mutadas de Ataxia Telangiectasia/genética , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Reprogramação Celular , Neoplasias/metabolismo , Microambiente Tumoral , Aminoácidos de Cadeia Ramificada/metabolismo , Metabolômica , Animais , Camundongos , Linhagem Celular Tumoral
6.
Commun Biol ; 5(1): 435, 2022 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-35538213

Assuntos
Genoma
7.
Bone Res ; 10(1): 33, 2022 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-35383146

RESUMO

Identification of regulators of osteoblastogenesis that can be pharmacologically targeted is a major goal in combating osteoporosis, a common disease of the elderly population. Here, unbiased kinome RNAi screening in primary murine osteoblasts identified cyclin-dependent kinase 5 (Cdk5) as a suppressor of osteoblast differentiation in both murine and human preosteoblastic cells. Cdk5 knockdown by siRNA, genetic deletion using the Cre-loxP system, or inhibition with the small molecule roscovitine enhanced osteoblastogenesis in vitro. Roscovitine treatment significantly enhanced bone mass by increasing osteoblastogenesis and improved fracture healing in mice. Mechanistically, downregulation of Cdk5 expression increased Erk phosphorylation, resulting in enhanced osteoblast-specific gene expression. Notably, simultaneous Cdk5 and Erk depletion abrogated the osteoblastogenesis conferred by Cdk5 depletion alone, suggesting that Cdk5 regulates osteoblast differentiation through MAPK pathway modulation. We conclude that Cdk5 is a potential therapeutic target to treat osteoporosis and improve fracture healing.

8.
Nanoscale ; 14(2): 492-505, 2022 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-34913453

RESUMO

Cancer is a debilitating disease and one of the leading causes of death in the world. In spite of the current clinical management being dependent on applying robust pathological variables and well-defined therapeutic strategies, there is an imminent need for novel and targeted therapies with least side effects. RNA interference (RNAi) has gained attention due to its precise potential for targeting multiple genes involved in cancer progression. Nanoparticles with their enhanced permeability and retention (EPR) effect have been found to overcome the limitations of RNAi-based therapies. With their high transportation capacity, nanocarriers can target RNAi molecules to tumor tissues and protect them from enzymatic degradation. Accumulating evidence has shown that tyrosine kinase Ephb4 is overexpressed in various cancers. Therefore, we report here the development and pre-clinical validation of curcumin-chitosan-loaded: eudragit-coated nanocomposites conjugated with Ephb4 shRNA as a feasible bio-drug to suppress breast and colon cancers. The proposed bio-drug is non-toxic and bio-compatible with a higher uptake efficiency and through our experimental results we have demonstrated the effective site-specific delivery of this biodrug and the successfull silencing of their respective target genes in vivo in autochthonous knockout models of breast and colon cancer. While mammary tumors showed a considerable decrease in size, oral administration of the biodrug conjugate to Apc knockout colon models prolonged the animal survival period by six months. Hence, this study has provided empirical proof that the combinatorial approach involving RNA interference and nanotechnology is a promising alliance for next-generation cancer therapeutics.


Assuntos
Quitosana , Neoplasias do Colo , Curcumina , Nanopartículas , Animais , Neoplasias do Colo/tratamento farmacológico , Neoplasias do Colo/genética , Curcumina/farmacologia , Interferência de RNA
9.
J Cell Biol ; 220(8)2021 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-34037658

RESUMO

Oncogene-induced senescence (OIS) is a stable cell cycle arrest that occurs in normal cells upon oncogene activation. Cells undergoing OIS express a wide variety of secreted factors that affect the senescent microenvironment termed the senescence-associated secretory phenotype (SASP), which is beneficial or detrimental in a context-dependent manner. OIS cells are also characterized by marked epigenetic changes. We globally assessed histone modifications of OIS cells and discovered an increase in the active histone marks H3K79me2/3. The H3K79 methyltransferase disruptor of telomeric silencing 1-like (DOT1L) was necessary and sufficient for increased H3K79me2/3 occupancy at the IL1A gene locus, but not other SASP genes, and was downstream of STING. Modulating DOT1L expression did not affect the cell cycle arrest. Together, our studies establish DOT1L as an epigenetic regulator of the SASP, whose expression is uncoupled from the senescence-associated cell cycle arrest, providing a potential strategy to inhibit the negative side effects of senescence while maintaining the beneficial inhibition of proliferation.


Assuntos
Senescência Celular , Metilação de DNA , Epigênese Genética , Fibroblastos/enzimologia , Histona-Lisina N-Metiltransferase/metabolismo , Histonas/metabolismo , Interleucina-1alfa/metabolismo , 9,10-Dimetil-1,2-benzantraceno , Animais , Proteína beta Intensificadora de Ligação a CCAAT/genética , Proteína beta Intensificadora de Ligação a CCAAT/metabolismo , Pontos de Checagem do Ciclo Celular , Proliferação de Células , Feminino , Células HEK293 , Histona-Lisina N-Metiltransferase/genética , Histonas/genética , Humanos , Interleucina-1alfa/genética , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos , Microscopia de Fluorescência , Papiloma/induzido quimicamente , Papiloma/genética , Papiloma/metabolismo , Papiloma/patologia , Fenótipo , Via Secretória , Neoplasias Cutâneas/induzido quimicamente , Neoplasias Cutâneas/genética , Neoplasias Cutâneas/metabolismo , Neoplasias Cutâneas/patologia , Acetato de Tetradecanoilforbol
10.
Life (Basel) ; 11(4)2021 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-33918220

RESUMO

p16INK4A (hereafter called p16) is an important tumor suppressor protein frequently suppressed in human cancer and highly upregulated in many types of senescence. Although its role as a cell cycle regulator is very well delineated, little is known about its other non-cell cycle-related roles. Importantly, recent correlative studies suggest that p16 may be a regulator of tissue immunological surveillance through the transcriptional regulation of different chemokines, interleukins and other factors secreted as part of the senescence-associated secretory phenotype (SASP). Here, we summarize the current evidence supporting the hypothesis that p16 is a regulator of tumor immunity.

12.
JBMR Plus ; 3(9): e10206, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31667458

RESUMO

One of the most prevalent genetic iron overload disorders in Caucasians is caused by mutations in the HFE gene. Both HFE patients and Hfe-mouse models develop a progressive accumulation of iron in the parenchymal cells of various tissues, eventually resulting in liver cirrhosis, hepatocellular carcinoma, cardiomyopathies, hypogonadism, and other pathologies. Clinical data and preclinical models have brought considerable attention to the correlation between iron overload and the development of osteoporosis in HFE/Hfe hemochromatosis. Our study critically challenges this concept. We show that systemic iron overload, at the degree present in Hfe -/- mice, does not associate with the microarchitecture impairment of long bones, thus excluding a negative effect of iron overload on bone integrity. We further reveal that Hfe actions in osteoblasts and osteoclasts are dispensable for the maintenance of bone and iron homeostasis in mice under steady-state conditions. We conclude that, despite systemic iron overload, Hfe -/- mice present normal physiological bone homeostasis. © 2019 The Authors. JBMR Plus in published by Wiley Periodicals, Inc. on behalf of the American Society for Bone and Mineral Research.

13.
Pharmaceuticals (Basel) ; 12(2)2019 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-31067696

RESUMO

The liver, through the production of iron hormone hepcidin, controls body iron levels. High liver iron levels and deregulated hepcidin expression are commonly observed in many liver diseases including highly prevalent genetic iron overload disorders. In spite of a number of breakthrough investigations into the signals that control hepcidin expression, little progress has been made towards investigations into intracellular signaling in the liver under excess of iron. This study examined hepatic signaling pathways underlying acquired and genetic iron overload conditions. Our data demonstrate that hepatic iron overload associates with a decline in the activation of mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase (Erk) kinase (Mek1/2) pathway by selectively affecting the phosphorylation of Erk1/2. We propose that Mek1/2-Erk1/2 signaling is uncoupled from iron-Bmp-Smad-mediated hepcidin induction and that it may contribute to a number of liver pathologies in addition to toxic effects of iron. We believe that our findings will advance the understanding of cellular signaling events in the liver during iron overload of different etiologies.

14.
Methods Mol Biol ; 1974: 245-263, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31099009

RESUMO

RNA interference (RNAi) remains one of the most promising and emerging strategies for the effective cancer treatment due to its high target specificity and greater potency. However, it is hindered due to lack of appropriate targeting technologies. Therefore, there is an imminent need to develop specific and robust delivery systems for successful gene silencing. Nanotechnology-based strategies have been in place to combat the shortcomings associated with viral-based delivery systems. Herein we describe protocols for successful in vitro and in vivo delivery of gene-specific nucleic acids such as siRNAs and shRNAs using PEI-PGMA nanoparticles for efficient cancer therapy.


Assuntos
Neoplasias da Mama/terapia , Neoplasias Colorretais/terapia , Nanopartículas/química , RNA Interferente Pequeno/genética , Animais , Neoplasias da Mama/genética , Neoplasias Colorretais/genética , Modelos Animais de Doenças , Feminino , Inativação Gênica/efeitos dos fármacos , Humanos , Metilmetacrilatos/química , Metilmetacrilatos/farmacologia , Camundongos , Nanopartículas/uso terapêutico , Interferência de RNA/efeitos dos fármacos , RNA Interferente Pequeno/química , RNA Interferente Pequeno/farmacologia
15.
Antioxid Redox Signal ; 29(5): 484-499, 2018 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-29212341

RESUMO

AIMS: Release of large amounts of free heme into circulation, overproduction of reactive oxygen species (ROS), and activation of toll-like receptor-4-dependent responses are considered critical for the ability of heme to promote oxidative stress and to initiate proinflammatory responses, posing a serious threat to the body. A deep understanding of the consequences of heme overload on the regulation of cellular and systemic iron homeostasis is, however, still lacking. RESULTS: The effects of heme on iron metabolism were studied in primary macrophages and in mouse models of acute and chronic hemolysis. We demonstrated that hemolysis was associated with a significant depletion of intracellular iron levels and increased expression of the sole iron exporter protein, ferroportin. The pathophysiological relevance of this mechanism was further demonstrated in sickle cell anemia mice, which, despite chronic hemolysis, maintained high ferroportin expression and increased iron export. We identified a redox active iron species and superoxide as regulators for ferroportin induction by heme. Scavenging the ROS production, by use of a pharmacological antioxidant N-acetylcysteine, prevented ferroportin induction and normalized intracellular iron levels in macrophages and in experimentally induced hemolysis in mice. INNOVATION: Our data propose that scavenging ROS levels may be a novel therapeutic strategy to balance intracellular iron levels and systemic iron influx in conditions associated with heme overload. CONCLUSION: This study identifies that the pro-oxidant, and not the proinflammatory, actions of heme profoundly impact on iron homeostasis by critically regulating the expression of ferroportin and iron export in hemolytic conditions. Antioxid. Redox Signal. 29, 484-499.


Assuntos
Proteínas de Transporte de Cátions/genética , Ferro/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Animais , Antioxidantes/metabolismo , Modelos Animais de Doenças , Heme/metabolismo , Hemólise , Lipopolissacarídeos/imunologia , Macrófagos/metabolismo , Camundongos , Estresse Oxidativo , Baço/metabolismo
16.
Tumour Biol ; 35(3): 2303-11, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24158910

RESUMO

The objective of the present study was to investigate the association between TP53 gene single nucleotide polymorphisms (SNPs) and colorectal cancer (CRC) predisposition in south Indian population and to evaluate the role of TP53 expression in the pathophysiology of CRC. A genetic association study was conducted in 103 CRC cases and 107 controls of south Indian origin. We genotyped ten selected TP53 SNPs by polymerase chain reaction-sequencing analysis. Haplotype frequencies for multiple loci and the standardized disequilibrium coefficient (D') for pairwise linkage disequilibrium (LD) were assessed by Haploview Software. In addition, to better understand the role of TP53 in the pathophysiology of CRC, the expression pattern was evaluated in analogous tumor and normal tissues from 23 CRC patients by Western blot analysis. The frequencies of Pro72Pro (P = 0.0033) genotype and Ser47/Pro72 (P = 0.00171) haplotype were significantly higher in patients as compared to controls. Strong LD was observed between codon 47 and 72 in cases (D' = 0.32) as compared to controls (D' = 0.21). The polymorphism was not observe at the remaining eight SNPs loci analyzed. Furthermore, increased TP53 expression was observed in tumor tissue than in analogous normal tissue of CRC patients. Interestingly, advanced stage tumors showed more elevated TP53 expression compared to early stage tumors. In conclusion, the TP53 Pro72Pro genotype and Ser47/Pro72 haplotype has an increased risk for CRC predisposition in south Indian population. In addition, elevated TP53 expression appears to be useful prognostic marker for CRC.


Assuntos
Neoplasias Colorretais/genética , Predisposição Genética para Doença/genética , Proteína Supressora de Tumor p53/genética , Povo Asiático/genética , Sequência de Bases , Western Blotting , Estudos de Casos e Controles , Feminino , Estudo de Associação Genômica Ampla , Genótipo , Humanos , Índia , Masculino , Pessoa de Meia-Idade , Polimorfismo de Nucleotídeo Único , Reação em Cadeia da Polimerase Via Transcriptase Reversa
17.
Mol Hum Reprod ; 18(5): 280-7, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22184339

RESUMO

The objective of the present study was to investigate the association between gene E-cadherin single nucleotide polymorphisms (SNPs) and risk of developing endometriosis in Indian women and to evaluate the role of E-cadherin expression in the pathophysiology of endometriosis. A genetic association study was conducted in 715 endometriosis cases and 500 controls of Indian origin. We genotyped -160 C/A, +54 C/T and -347 G/GA SNPs of gene E-cadherin by PCR-sequencing and PCR-restriction fragment length polymorphism techniques. Haplotype frequencies for multiple loci and the standardized disequilibrium coefficient (D') for pair-wise linkage disequilibrium (LD) were assessed by Haploview Software. In addition, to better understand genetic contributions to the pathophysiology of endometriosis, the expression pattern of E-cadherin in the endometrium of women with and without endometriosis was analyzed by western blot and immunohistochemical analysis. The frequencies of -347GA/GA (P = 0.026) and -160A/A (P = 0.0019) genotypes and -347G/-160A/+54C (P = 0.007) and -347GA/-160A/+54C (P < 0.0001) haplotypes were significantly different between patients and controls. Strong LD was observed between -347G/GA and -160C/A loci (D' = 0.64) when compared with -347G/GA and +54C/T (D' = 0.585) or -160C/A and +54C/T (D' = 0.05) loci in cases. Furthermore, increased membranous E-cadherin expression was observed in cases than in controls. The expression seems to be genotype dependent. In conclusion, the E-cadherin -347GA/GA and -160A/A genotypes and -347GA/-160A/+54C and -347G/-160A/+54C haplotypes may jointly modify the risk of endometriosis in Indian women. In addition, the differential expression of E-cadherin may play an important role in pathogenesis of endometriosis.


Assuntos
Caderinas/genética , Endometriose/genética , Polimorfismo de Nucleotídeo Único , Antígenos CD , Western Blotting , Feminino , Estudos de Associação Genética , Predisposição Genética para Doença , Haplótipos , Humanos , Imuno-Histoquímica , Índia , Fatores de Risco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...