Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Omega ; 7(19): 16793-16802, 2022 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-35601329

RESUMO

The demand for carbon fibers (CFs) based on renewable raw materials as the reinforcing fiber in composites for lightweight applications is growing. Lignin-cellulose precursor fibers (PFs) are a promising alternative, but so far, there is limited knowledge of how to continuously convert these PFs under industrial-like conditions into CFs. Continuous conversion is vital for the industrial production of CFs. In this work, we have compared the continuous conversion of lignin-cellulose PFs (50 wt % softwood kraft lignin and 50 wt % dissolving-grade kraft pulp) with batchwise conversion. The PFs were successfully stabilized and carbonized continuously over a total time of 1.0-1.5 h, comparable to the industrial production of CFs from polyacrylonitrile. CFs derived continuously at 1000 °C with a relative stretch of -10% (fiber contraction) had a conversion yield of 29 wt %, a diameter of 12-15 µm, a Young's modulus of 46-51 GPa, and a tensile strength of 710-920 MPa. In comparison, CFs obtained at 1000 °C via batchwise conversion (12-15 µm diameter) with a relative stretch of 0% and a conversion time of 7 h (due to the low heating and cooling rates) had a higher conversion yield of 34 wt %, a higher Young's modulus (63-67 GPa) but a similar tensile strength (800-920 MPa). This suggests that the Young's modulus can be improved by the optimization of the fiber tension, residence time, and temperature profile during continuous conversion, while a higher tensile strength can be achieved by reducing the fiber diameter as it minimizes the risk of critical defects.

2.
Sci Rep ; 11(1): 8346, 2021 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-33863949

RESUMO

Especially the applications of fibrous composites in miniature products, dental and other medical applications require accurate data of microscale mechanics. The characterization of adhesion between single filament and picoliter-scale polymer matrix usually relies on the experiments using so-called microbond (MB) testing. The traditional MB test systems provide unitary data output (i.e., converted force) which is enigmatic in resolving the fracture parameters of multi-mode interface cracks. As a fundamental basis, the momentary reaction force and respective local strain at the location of a non-ambiguous gradient are needed for a mechanical analysis. In this paper, a monolithic compliant based structure with an integrated Fiber Bragg Grating (FBG) sensor is developed and analysed. The stiffness of the compliant structure is estimated by using mathematical and finite element (FE) models. Qualification experiments are carried out to confirm the functional performance: MB testing of synthetic (carbon and glass) and natural (flax) single filaments are successfully performed. Quasi-static and dynamic analysis of the MB testing is carried out by using the FE method to interpret the response of the compliant structure. The developed strain-sensing CBPM-FBG holder shows excellent sensitivity during the MB tests for both synthetic and natural filaments, even at a low filament diameters as low as [Formula: see text], making the monolithic compliant structure the first instrument capable of force-strain data output for bonded filament-droplet specimens.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...