Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Methods Mol Biol ; 2763: 71-78, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38347401

RESUMO

In the intestine, mucus covering the mucosa plays a critical role in maintaining gut homeostasis by protecting the mucosa from invasion by commensal bacteria. The gut mucus is composed primarily of MUC2 mucin secreted by goblet cells. MUC2 is highly O-glycosylated, and O-glycans are necessary for the function and polymer structure of MUC2. In addition, recent evidence revealed that several glycan modifications, such as sialylation and sulfation, confer resistance of mucins to proteolysis and affect the viscosity and lubricity of mucus. Therefore, characterizing glycan structures of mucins is required to understand their functions fully. In this chapter, we describe how to purify secreted mucins from the mammalian intestine for analysis of their glycan structures. This description includes the extraction of MUC2 mucin from the mucosal surface of the mouse colon and colon explants.


Assuntos
Mucosa Intestinal , Mucinas , Animais , Camundongos , Mucinas/química , Mucosa Intestinal/microbiologia , Mucina-2 , Células Caliciformes , Polissacarídeos , Mamíferos
2.
Methods Mol Biol ; 2763: 403-414, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38347430

RESUMO

Mucus is part of the innate immune system that defends the mucosa against microbiota and other infectious threats. The mechanical characteristics of mucus, such as viscosity, elasticity, and lubricity, are critically involved in its barrier function. However, assessing the mechanical properties of mucus remains challenging because of technical limitations. Thus, a new approach that characterizes the mechanical properties of mucus on colonic tissues needs to be developed. Here, we describe a novel strategy to characterize the ex vivo mechanical properties of mucus on colonic tissues using atomic force microscopy. This description includes the preparation of the mouse colon sample, AFM calibration, and determining the elasticity (Young's modulus, E [kPa]) of the mucus layer in the colon.


Assuntos
Microscopia de Força Atômica , Animais , Camundongos , Elasticidade , Módulo de Elasticidade
3.
Mucosal Immunol ; 16(5): 624-641, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37385587

RESUMO

In the intestine, mucin 2 (Muc2) forms a network structure and prevents bacterial invasion. Glycans are indispensable for Muc2 barrier function. Among various glycosylation patterns of Muc2, sialylation inhibits bacteria-dependent Muc2 degradation. However, the mechanisms by which Muc2 creates the network structure and sialylation prevents mucin degradation remain unknown. Here, by focusing on two glycosyltransferases, St6 N-acetylgalactosaminide α-2,6-sialyltransferase 6 (St6galnac6) and ß-1,3-galactosyltransferase 5 (B3galt5), mediating the generation of desialylated glycans, we show that sialylation forms the network structure of Muc2 by providing negative charge and hydrophilicity. The colonic mucus of mice lacking St6galnac6 and B3galt5 was less sialylated, thinner, and more permeable to microbiota, resulting in high susceptibility to intestinal inflammation. Mice with a B3galt5 mutation associated with inflammatory bowel disease (IBD) also showed the loss of desialylated glycans of mucus and the high susceptibility to intestinal inflammation, suggesting that the reduced sialylation of Muc2 is associated with the pathogenesis of IBD. In mucins of mice with reduced sialylation, negative charge was reduced, the network structure was disturbed, and many bacteria invaded. Thus, sialylation mediates the negative charging of Muc2 and facilitates the formation of the mucin network structure, thereby inhibiting bacterial invasion in the colon to maintain gut homeostasis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...