Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 5865, 2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-38997282

RESUMO

The macroscale connectome is the network of physical, white-matter tracts between brain areas. The connections are generally weighted and their values interpreted as measures of communication efficacy. In most applications, weights are either assigned based on imaging features-e.g. diffusion parameters-or inferred using statistical models. In reality, the ground-truth weights are unknown, motivating the exploration of alternative edge weighting schemes. Here, we explore a multi-modal, regression-based model that endows reconstructed fiber tracts with directed and signed weights. We find that the model fits observed data well, outperforming a suite of null models. The estimated weights are subject-specific and highly reliable, even when fit using relatively few training samples, and the networks maintain a number of desirable features. In summary, we offer a simple framework for weighting connectome data, demonstrating both its ease of implementation while benchmarking its utility for typical connectome analyses, including graph theoretic modeling and brain-behavior associations.


Assuntos
Encéfalo , Conectoma , Substância Branca , Humanos , Encéfalo/diagnóstico por imagem , Encéfalo/anatomia & histologia , Encéfalo/fisiologia , Substância Branca/diagnóstico por imagem , Substância Branca/anatomia & histologia , Substância Branca/fisiologia , Masculino , Feminino , Adulto , Modelos Neurológicos , Rede Nervosa/fisiologia , Rede Nervosa/diagnóstico por imagem , Rede Nervosa/anatomia & histologia , Imagem de Tensor de Difusão/métodos , Adulto Jovem , Imageamento por Ressonância Magnética/métodos
2.
J Neurosci ; 44(25)2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38719449

RESUMO

Decreased neuronal specificity of the brain in response to cognitive demands (i.e., neural dedifferentiation) has been implicated in age-related cognitive decline. Investigations into functional connectivity analogs of these processes have focused primarily on measuring segregation of nonoverlapping networks at rest. Here, we used an edge-centric network approach to derive entropy, a measure of specialization, from spatially overlapping communities during cognitive task fMRI. Using Human Connectome Project Lifespan data (713 participants, 36-100 years old, 55.7% female), we characterized a pattern of nodal despecialization differentially affecting the medial temporal lobe and limbic, visual, and subcortical systems. At the whole-brain level, global entropy moderated declines in fluid cognition across the lifespan and uniquely covaried with age when controlling for the network segregation metric modularity. Importantly, relationships between both metrics (entropy and modularity) and fluid cognition were age dependent, although entropy's relationship with cognition was specific to older adults. These results suggest entropy is a potentially important metric for examining how neurological processes in aging affect functional specialization at the nodal, network, and whole-brain level.


Assuntos
Envelhecimento , Encéfalo , Cognição , Conectoma , Entropia , Imageamento por Ressonância Magnética , Rede Nervosa , Humanos , Feminino , Masculino , Idoso , Pessoa de Meia-Idade , Adulto , Envelhecimento/fisiologia , Envelhecimento/psicologia , Cognição/fisiologia , Idoso de 80 Anos ou mais , Encéfalo/fisiologia , Encéfalo/diagnóstico por imagem , Rede Nervosa/fisiologia , Rede Nervosa/diagnóstico por imagem
3.
Commun Biol ; 7(1): 126, 2024 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-38267534

RESUMO

Previous studies have adopted an edge-centric framework to study fine-scale network dynamics in human fMRI. To date, however, no studies have applied this framework to data collected from model organisms. Here, we analyze structural and functional imaging data from lightly anesthetized mice through an edge-centric lens. We find evidence of "bursty" dynamics and events - brief periods of high-amplitude network connectivity. Further, we show that on a per-frame basis events best explain static FC and can be divided into a series of hierarchically-related clusters. The co-fluctuation patterns associated with each cluster centroid link distinct anatomical areas and largely adhere to the boundaries of algorithmically detected functional brain systems. We then investigate the anatomical connectivity undergirding high-amplitude co-fluctuation patterns. We find that events induce modular bipartitions of the anatomical network of inter-areal axonal projections. Finally, we replicate these same findings in a human imaging dataset. In summary, this report recapitulates in a model organism many of the same phenomena observed in previously edge-centric analyses of human imaging data. However, unlike human subjects, the murine nervous system is amenable to invasive experimental perturbations. Thus, this study sets the stage for future investigation into the causal origins of fine-scale brain dynamics and high-amplitude co-fluctuations. Moreover, the cross-species consistency of the reported findings enhances the likelihood of future translation.


Assuntos
Araceae , Conectoma , Cristalino , Humanos , Animais , Camundongos , Encéfalo/diagnóstico por imagem , Axônios
4.
Netw Neurosci ; 7(3): 926-949, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37781150

RESUMO

Edge time series decompose functional connectivity into its framewise contributions. Previous studies have focused on characterizing the properties of high-amplitude frames (time points when the global co-fluctuation amplitude takes on its largest value), including their cluster structure. Less is known about middle- and low-amplitude co-fluctuations (peaks in co-fluctuation time series but of lower amplitude). Here, we directly address those questions, using data from two dense-sampling studies: the MyConnectome project and Midnight Scan Club. We develop a hierarchical clustering algorithm to group peak co-fluctuations of all magnitudes into nested and multiscale clusters based on their pairwise concordance. At a coarse scale, we find evidence of three large clusters that, collectively, engage virtually all canonical brain systems. At finer scales, however, each cluster is dissolved, giving way to increasingly refined patterns of co-fluctuations involving specific sets of brain systems. We also find an increase in global co-fluctuation magnitude with hierarchical scale. Finally, we comment on the amount of data needed to estimate co-fluctuation pattern clusters and implications for brain-behavior studies. Collectively, the findings reported here fill several gaps in current knowledge concerning the heterogeneity and richness of co-fluctuation patterns as estimated with edge time series while providing some practical guidance for future studies.

5.
Neuroimage ; 263: 119591, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36031181

RESUMO

The interaction between brain regions changes over time, which can be characterized using time-varying functional connectivity (tvFC). The common approach to estimate tvFC uses sliding windows and offers limited temporal resolution. An alternative method is to use the recently proposed edge-centric approach, which enables the tracking of moment-to-moment changes in co-fluctuation patterns between pairs of brain regions. Here, we first examined the dynamic features of edge time series and compared them to those in the sliding window tvFC (sw-tvFC). Then, we used edge time series to compare subjects with autism spectrum disorder (ASD) and healthy controls (CN). Our results indicate that relative to sw-tvFC, edge time series captured rapid and bursty network-level fluctuations that synchronize across subjects during movie-watching. The results from the second part of the study suggested that the magnitude of peak amplitude in the collective co-fluctuations of brain regions (estimated as root sum square (RSS) of edge time series) is similar in CN and ASD. However, the trough-to-trough duration in RSS signal is greater in ASD, compared to CN. Furthermore, an edge-wise comparison of high-amplitude co-fluctuations showed that the within-network edges exhibited greater magnitude fluctuations in CN. Our findings suggest that high-amplitude co-fluctuations captured by edge time series provide details about the disruption of functional brain dynamics that could potentially be used in developing new biomarkers of mental disorders.


Assuntos
Transtorno do Espectro Autista , Humanos , Transtorno do Espectro Autista/diagnóstico por imagem , Mapeamento Encefálico/métodos , Imageamento por Ressonância Magnética/métodos , Encéfalo/diagnóstico por imagem , Fatores de Tempo , Vias Neurais/diagnóstico por imagem
6.
Neuroimage ; 250: 118971, 2022 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-35131435

RESUMO

Both cortical and subcortical regions can be functionally organized into networks. Regions of the basal ganglia are extensively interconnected with the cortex via reciprocal connections that relay and modulate cortical function. Here we employ an edge-centric approach, which computes co-fluctuations among region pairs in a network to investigate the role and interaction of subcortical regions with cortical systems. By clustering edges into communities, we show that cortical systems and subcortical regions couple via multiple edge communities, with hippocampus and amygdala having a distinct pattern from striatum and thalamus. We show that the edge community structure of cortical networks is highly similar to one obtained from cortical nodes when the subcortex is present in the network. Additionally, we show that the edge community profile of both cortical and subcortical nodes can be estimates solely from cortico-subcortical interactions. Finally, we used a motif analysis focusing on edge community triads where a subcortical region coupled to two cortical regions and found that two community triads where one community couples the subcortex to the cortex were overrepresented. In summary, our results show organized coupling of the subcortex to the cortex that may play a role in cortical organization of primary sensorimotor/attention and heteromodal systems and puts forth the motif analysis of edge community triads as a promising method for investigation of communication patterns in networks.


Assuntos
Córtex Cerebral/diagnóstico por imagem , Conectoma/métodos , Imageamento por Ressonância Magnética/métodos , Gânglios da Base/diagnóstico por imagem , Humanos , Processamento de Imagem Assistida por Computador , Rede Nervosa/diagnóstico por imagem , Vias Neurais/diagnóstico por imagem
7.
Neuroimage ; 244: 118607, 2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34607022

RESUMO

The modular structure of brain networks supports specialized information processing, complex dynamics, and cost-efficient spatial embedding. Inter-individual variation in modular structure has been linked to differences in performance, disease, and development. There exist many data-driven methods for detecting and comparing modular structure, the most popular of which is modularity maximization. Although modularity maximization is a general framework that can be modified and reparamaterized to address domain-specific research questions, its application to neuroscientific datasets has, thus far, been narrow. Here, we highlight several strategies in which the "out-of-the-box" version of modularity maximization can be extended to address questions specific to neuroscience. First, we present approaches for detecting "space-independent" modules and for applying modularity maximization to signed matrices. Next, we show that the modularity maximization frame is well-suited for detecting task- and condition-specific modules. Finally, we highlight the role of multi-layer models in detecting and tracking modules across time, tasks, subjects, and modalities. In summary, modularity maximization is a flexible and general framework that can be adapted to detect modular structure resulting from a wide range of hypotheses. This article highlights multiple frontiers for future research and applications.


Assuntos
Mapeamento Encefálico/métodos , Redes Neurais de Computação , Algoritmos , Encéfalo/fisiologia , Cognição , Humanos , Neurociências
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...