Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chem Sci ; 15(24): 9183-9191, 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38903207

RESUMO

Mn-catalysed reactions offer great potential in synthetic organic and organometallic chemistry and the success of Mn carbonyl complexes as (pre)catalysts hinges on their stabilisation by strong field ligands enabling Mn(i)-based, redox neutral, catalytic cycles. The mechanistic processes underpinning the activation of the ubiquitous Mn(0) (pre)catalyst [Mn2(CO)10] in C-H bond functionalisation reactions is now reported for the first time. By combining time-resolved infra-red (TRIR) spectroscopy on a ps-ms timescale and in operando studies using in situ infra-red spectroscopy, insight into the microscopic bond activation processes which lead to the catalytic activity of [Mn2(CO)10] has been gained. Using an exemplar system, based on the annulation between an imine, 1, and Ph2C2, 2, TRIR spectroscopy enabled the key intermediate [Mn2(CO)9(1)], formed by CO loss from [Mn2(CO)10], to be identified. In operando studies demonstrate that [Mn2(CO)9(1)] is also formed from [Mn2(CO)10] under the catalytic conditions and is converted into a mononuclear manganacycle, [Mn(CO)4(C^N)] (C^N = cyclometallated imine), a second molecule of 1 acts as the oxidant which is, in turn, reduced to an amine. As [Mn(CO)4(C^N)] complexes are catalytically competent, a direct route from [Mn2(CO)10] into the Mn(i) catalytic reaction coordinate has been determined. Critically, the mechanistic differences between [Mn2(CO)10] and Mn(i) (pre)catalysts have been delineated, informing future catalyst screening studies.

2.
Inorg Chem ; 63(17): 7589-7603, 2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38635870

RESUMO

A series of isomeric bis-2,6-(monoalkoxyphenyl)pyridine and bis-2,6-(dialkoxyphenyl)pyridine ligands were synthesized and characterized. In order to prepare their chlorogold(III) complexes, intermediate chloromercury(II) complexes were first prepared, but unlike observations from previous studies where they were obtained impure and at best in moderate yield, here pure complexes were synthesized, many in rather high yields. Depending on the substitution pattern of the alkoxy chains on the ligands, mono- and/or dimercurated complexes were obtained, characterized by 1H, 13C{1H}, and 199Hg NMR spectroscopy as well as, in several cases, by X-ray crystallography. Factors that may explain this unusual reactivity are discussed. In most cases, transmetalation to the related chlorogold(III) complex proceeded smoothly, although lower yields were obtained when starting from doubly mercurated precursors. Prompted by the propensity of these ligands to mercurate, attempts were made to effect direct auration, but none was successful. However, dimeric, orthometalated complexes of palladium(II) could be prepared and were also amenable to transmetalation to the chlorogold(III) complex, providing for a mercury-free synthesis.

3.
Chem Sci ; 15(8): 2763-2777, 2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38404373

RESUMO

Pdn clusters offer unique selectivity and exploitable reactivity in catalysis. Understanding the behavior of Pdn clusters is thus critical for catalysis, applied synthetic organic chemistry and greener outcomes for precious Pd. The Pd3 cluster, [Pd3(µ-Cl)(µ-PPh2)2(PPh3)3][Cl] (denoted as Pd3Cl2), which exhibits distinctive reactivity, was synthesized and immobilized on a phosphine-functionalized polystyrene resin (denoted as immob-Pd3Cl2). The resultant material served as a tool to study closely the role of Pd3 clusters in a prototypical Suzuki-Miyaura cross-coupling of 4-fluoro-1-bromobenzene and 4-methoxyphenyl boronic acid at varying low Pd ppm concentrations (24, 45, and 68 ppm). Advanced heterogeneity tests such as Hg poisoning and the three-phase test showed that leached mononuclear or nanoparticulate Pd are unlikely to be the major active catalyst species under the reaction conditions tested. EXAFS/XANES analysis from (pre)catalyst and filtered catalysts during and after catalysis has shown the intactness of the triangular structure of the Pd3X2 cluster, with exchange of chloride (X) by bromide during catalytic turnover of bromoarene substrate. This finding is further corroborated by treatment of immob-Pd3Cl2 after catalyzing the Suzuki-Miyaura reaction with excess PPh3, which releases the cluster from the polymer support and so permits direct observation of [Pd3(µ-Br)(µ-PPh2)2(PPh3)3]+ ions by ESI-MS. No evidence is seen for a proposed intermediate in which the bridging halogen on the Pd3 motif is replaced by an aryl group from the organoboronic acid, i.e. formed by a transmetallation-first process. Our findings taken together indicate that the 'Pd3X2' motif is an active catalyst species, which is stabilized by being immobilized, providing a more robust Pd3 cluster catalyst system. Non-immobilized Pd3Cl2 is less stable, as is followed by stepwise XAFS of the non-immobilized Pd3Cl2, which gradually changes to a species consistent with 'Pdx(PPh3)y' type material. Our findings have far-reaching future implications for Pd3 cluster involvement in catalysis, showing that immobilization of Pd3 cluster species offers advantages for rigorous mechanistic examination and applied chemistries.

4.
J Am Chem Soc ; 146(8): 5702-5711, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38372651

RESUMO

Macrocycles and medium-sized rings are important in many scientific fields and technologies but are hard to make using current methods, especially on a large scale. Outlined herein is a strategy by which functionalized macrocycles and medium-sized rings can be prepared using cyclization/ring expansion (CRE) cascade reactions, without resorting to high dilution conditions. CRE cascade reactions are designed to operate exclusively via kinetically favorable 5-7-membered ring cyclization steps; this means that the problems typically associated with classical end-to-end macrocyclization reactions are avoided. A modular synthetic approach has been developed to facilitate the simple assembly of the requisite linear precursors, which can then be converted into an extremely broad range of functionalized macrocycles and medium-sized rings using one of nine CRE protocols.

5.
ACS Catal ; 14(2): 994-1004, 2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38269038

RESUMO

The neutral catalysts [IrCl(H)2(NHC)(substrate)2] or [IrCl(H)2(NHC)(substrate)(sulfoxide)] are used to transfer polarization from para hydrogen (pH2) to 3,5-dichloropyridine and 3,5-dibromopyridine substrates. This is achieved in a rapid, reversible, and low-cost process that relies on ligand exchange within the active catalyst. Notably, the sulfoxide-containing catalyst systems produced NMR signal enhancements between 1 and 2 orders of magnitude larger than its unmodified counterpart. Consequently, this signal amplification by reversible exchange hyperpolarization method can boost the 1H, 13C, and 15N nuclear magnetic resonance (NMR) signal intensities by factors up to 4350, 1550, and 46,600, respectively (14.0, 1.3, and 15.4% polarization). In this paper, NMR and X-ray crystallography are used to map the evolution of catalytically important species and provide mechanistic rational for catalytic efficiency. Furthermore, applications in spontaneous radiofrequency amplification by stimulated emission and NMR reaction monitoring are also shown.

6.
Chemistry ; 29(25): e202203038, 2023 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-36625067

RESUMO

Mn(I) C-H functionalization of coumarins provides a versatile and practical method for the rapid assembly of fused polycyclic pyridinium-containing coumarins in a regioselective manner. The synthetic strategy enables application of bench-stable organomanganese reagents in both photochemical- and thermal-promoted reactions. The cyclomanganated intermediates, and global reaction system, provide an ideal testing ground for structural characterization of the active Mn(I) carbonyl-containing species, including transient species observable by ultra-fast time-resolved spectroscopic methods. The thermodynamic reductive elimination product, solely encountered from reaction between alkynes and air-stable organometallic cyclomanganated coumarins, has enabled characterization of a critical seven-membered Mn(I) intermediate, detected by time-resolved infrared spectroscopy, enabling the elucidation of the temporal profile of key steps in the reductive elimination pathway. Quantitative data are provided. Manganated polycyclic products are readily decomplexed by AgBF4 , opening-up an efficient route to the formation of π-extended hybrid coumarin-pyridinium compounds.

7.
Inorg Chem ; 61(48): 19144-19155, 2022 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-36399670

RESUMO

The optical and electrochemical properties of quadruply bonded dimolybdenum paddlewheel complexes (Mo2PWCs) make them ideal candidates for incorporation into functional materials or devices, but one of the greatest bottlenecks for this is their poor stability toward atmospheric oxygen. By tuning the potential at which the Mo2 core is oxidized, it was possible to increase the tolerance of Mo2PWCs to air. A series of homoleptic Mo2PWCs bearing fluorinated formamidinate ligands have been synthesized and their electrochemical properties studied. The oxidation potential of the complexes was tuned in a predictable fashion by controlling the positions of the fluorine substituents on the ligands, as guided by a Hammett relationship. Studies into the air stability of the resulting complexes by multinuclear NMR spectroscopy show an increased tolerance to atmospheric oxygen with increasingly electron-withdrawing ligands. The heteroleptic complex Mo2(DFArF)3(OAc) [where DFArF = 3,5-(difluorophenyl)formamidinate] shows remarkable tolerance to oxygen in the solid state and in chloroform solutions. Through the employment of easily accessible ligands, the stability of the Mo2 core toward oxygen has been enhanced, thereby making Mo2PWCs with electron-withdrawing ligands more attractive candidates for the development of functional materials.

8.
J Am Chem Soc ; 143(25): 9682-9693, 2021 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-34152135

RESUMO

Site-selective dihalogenated heteroarene cross-coupling with organometallic reagents usually occurs at the halogen proximal to the heteroatom, enabled by intrinsic relative electrophilicity, particularly in strongly polarized systems. An archetypical example is the Suzuki-Miyaura cross-coupling (SMCC) of 2,4-dibromopyridine with organoboron species, which typically exhibit C2-arylation site-selectivity using mononuclear Pd (pre)catalysts. Given that Pd speciation, particularly aggregation, is known to lead to the formation of catalytically competent multinuclear Pdn species, the influence of these species on cross-coupling site-selectivity remains largely unknown. Herein, we disclose that multinuclear Pd species, in the form of Pd3-type clusters and nanoparticles, switch arylation site-selectivity from C2 to C4, in 2,4-dibromopyridine cross-couplings with both organoboronic acids (SMCC reactions) and Grignard reagents (Kumada-type reactions). The Pd/ligand ratio and the presence of suitable stabilizing salts were found to be critically important in switching the site-selectivity. More generally, this study provides experimental evidence that aggregated Pd catalyst species not only are catalytically competent but also alter reaction outcomes through changes in product selectivity.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...