Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Polymers (Basel) ; 10(10)2018 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-30961084

RESUMO

Novel composite hydrogels based on the combination of alginate (Alg), soy protein isolate (SPI) and bioactive glass (BG) nanoparticles were developed for soft tissue engineering. Human umbilical vein endothelial cells (HUVEC) and normal human dermal fibroblasts were cultivated on hydrogels for 7, 14 and 21 days. Cell morphology was visualized using fluorescent staining at Days 7 and 14 for fibroblast cells and Days 14 and 21 for HUVEC. Metabolic activity of cells was analyzed using a colorimetric assay (water soluble tetrazolium (WST) assay). Compared to pure Alg, Alg/SPI and Alg/SPI/BG provided superior surfaces for both types of cells, supporting their attachment, growth, spreading and metabolic activity. Fibroblasts showed better colonization and growth on Alg/SPI/BG hydrogels compared to Alg/SPI hydrogels. The results indicate that such novel composite hydrogels might find applications in soft tissue regeneration.

2.
Materials (Basel) ; 10(1)2017 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-28772442

RESUMO

Poly(glycerol sebacate) (PGS) is an elastomeric polymer which is attracting increasing interest for biomedical applications, including cartilage regeneration. However, its limited mechanical properties and possible negative effects of its degradation byproducts restrict PGS for in vivo application. In this study, a novel PGS-bioactive glass fiber (F18)-reinforced composite was developed and characterized. PGS-based reinforced scaffolds were fabricated via salt leaching and characterized regarding their mechanical properties, degradation, and bioactivity in contact with simulated body fluid. Results indicated that the incorporation of silicate-based bioactive glass fibers could double the composite tensile strength, tailor the polymer degradability, and improve the scaffold bioactivity.

3.
J Biomed Mater Res A ; 104(2): 553-69, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26402327

RESUMO

Soy protein (SP) based materials are gaining increasing interest for biomedical applications because of their tailorable biodegradability, abundance, being relatively inexpensive, exhibiting low immunogenicity, and for being structurally similar to components of the extracellular matrix (ECM) of tissues. Analysis of the available literature indicates that soy protein can be fabricated into different shapes, being relatively easy to be processed by solvent or melt based techniques. Furthermore soy protein can be blended with other synthetic and natural polymers and with inorganic materials to improve the mechanical properties and the bioactive behavior for several demands. This review discusses succinctly the biomedical applications of SP based materials focusing on processing methods, properties and applications highlighting future avenues for research.


Assuntos
Plásticos Biodegradáveis , Matriz Extracelular/química , Proteínas de Soja , Animais , Plásticos Biodegradáveis/química , Plásticos Biodegradáveis/uso terapêutico , Humanos , Proteínas de Soja/química , Proteínas de Soja/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...