Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Drug Dev Res ; 84(7): 1522-1536, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37571806

RESUMO

Osteoporosis is a significant public health issue in our aging population. It is an excessive bone resorption condition brought on by osteoclastogenesis, which makes bones more brittle. In the present work, a series of novel heterosteroidal derivatives have been synthesized using the microwave technique and were evaluated as antiosteoclastogenic agents. The structures of the newly synthesized compounds have been confirmed using analytical and spectral data. The antiosteoclastogenic activity of the newly synthesized compounds was estimated in vitro against osteoclast-differentiated cells from the RAW 264.7 cell line. The pregnenolone dimer 10, the pyridinotestosterone derivative 2, and the phenylnicotinonitrile pregnenolone derivative 8a attained the most promising antiosteoclastogenic activity displaying IC50 (the half maximal inhibitory concentration) values of 5.45 ± 5.30, 11.88 ± 2.09, and 13.40 ± 3.00 µM, respectively, in comparison with dimethyl itaconate (IC50 = 17.76 ± 3.20 µM) and alendronate (IC50 = 4.48 ± 1.89 µM) as reference compounds. Finally, an in silico ADME (Absorption, Distribution, Metabolism, and Excretion) study was conducted to evaluate the synthesized compounds' pharmacokinetic and drug-likeness properties. The results manifested that almost all the investigated compounds' properties were compatible with the specified optimal range, which indicates their reassuring pharmacokinetic properties.


Assuntos
Reabsorção Óssea , Osteogênese , Humanos , Idoso , Osteoclastos/metabolismo , Micro-Ondas , Reabsorção Óssea/tratamento farmacológico , Reabsorção Óssea/metabolismo , Pregnenolona/metabolismo
2.
Pharmaceuticals (Basel) ; 16(7)2023 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-37513869

RESUMO

This study shed light for the first time on the in vivo diabetic wound healing potential activity of natural marine soft coral polymeric nanoparticle in situ gel using an excision wound model. A Nephthea sp. methanol-methylene chloride extract loaded with pectin nanoparticles (LPNs) was created. For the preparation of in situ gel, ion-gelation techniques, the entrapment efficiency, the particle size, the polydispersity index, the zeta potential, the in-vitro drug release, and a transmission electron microscope were used and the best formula was selected. Using (UPLC-Q/TOF-MS), 27 secondary metabolites responsible for extract biological activity were identified. Isolation and identification of arachidic acid, oleic acid, nervonic acid, and bis-(2-ethylhexyl)-phthalate (DEHP) of Nephthea sp. was firstly reported here using NMR and mass spectral analyses. Moreover, LPN in situ gel has the best effects on regulating the proinflammatory cytokines (NF-κB, TNF-α, IL-6, and IL-1ß) that were detected on days 7 and 15. The results were confirmed with an in vitro enzymatic inhibitory effect of the extract against glycogen synthase kinase (GSK-3) and matrix metalloproteinase-1 (MMP-1), with IC50 values of 0.178 ± 0.009 and 0.258 ± 0.011 µg/mL, respectively. The molecular docking study showed a free binding energy of -9.6 kcal/mol for chabrolosteroid E, with the highest binding affinity for the enzyme (GSK-3), while isogosterone B had -7.8 kcal/mol for the enzyme (MMP-1). A pharmacokinetics study for chabrolohydroxybenzoquinone F and isogosterone B was performed, and it predicted the mode of action of wound healing activity.

3.
Pharmaceutics ; 15(6)2023 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-37376202

RESUMO

This study demonstrates high drug-loading of novel pyridine derivatives (S1-S4) in lipid- and polymer-based core-shell nanocapsules (LPNCs) for boosting the anticancer efficiency and alleviating toxicity of these novel pyridine derivatives. The nanocapsules were fabricated using a nanoprecipitation technique and characterized for particle size, surface morphology, and entrapment efficiency. The prepared nanocapsules exhibited a particle size ranging from 185.0 ± 17.4 to 223.0 ± 15.3 nm and a drug entrapment of >90%. The microscopic evaluation demonstrated spherical-shaped nanocapsules with distinct core-shell structures. The in vitro release study depicted a biphasic and sustained release pattern of test compounds from the nanocapsules. In addition, it was obvious from the cytotoxicity studies that the nanocapsules showed superior cytotoxicity against both MCF-7 and A549 cancer cell lines, as manifested by a significant decrease in the IC50 value compared to free test compounds. The in vivo antitumor efficacy of the optimized nanocapsule formulation (S4-loaded LPNCs) was investigated in an Ehrlich ascites carcinoma (EAC) solid tumor-bearing mice model. Interestingly, the entrapment of the test compound (S4) within LPNCs remarkably triggered superior tumor growth inhibition when compared with either free S4 or the standard anticancer drug 5-fluorouracil. Such enhanced in vivo antitumor activity was accompanied by a remarkable increase in animal life span. Furthermore, the S4-loaded LPNC formulation was tolerated well by treated animals, as evidenced by the absence of any signs of acute toxicity or alterations in biochemical markers of liver and kidney functions. Collectively, our findings clearly underscore the therapeutic potential of S4-loaded LPNCs over free S4 in conquering EAC solid tumors, presumably via granting efficient delivery of adequate concentrations of the entrapped drug to the target site.

4.
RSC Adv ; 13(23): 15689-15703, 2023 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-37235111

RESUMO

Pyridine is a nitrogen bearing heterocyclic scaffold that shows a wide range of biological activities. The pyridine nucleus has become an interesting target for medicinal chemistry researchers worldwide. Several pyridine derivatives exhibited good anticancer effects against diverse cell lines. Therefore, to explore new anticancer pyridine entities, novel pyridine derivatives were designed and synthesized and evaluated for their anticancer abilities in vitro and in vivo. All of the target compounds were evaluated against three different human cancer cell lines (Huh-7, A549 and MCF-7) via MTT assay. Most of the compounds exhibited significant cytotoxic activities. Compounds 3a, 3b, 5a and 5b showed superior antiproliferative activities to Taxol. Where, compound 3b showed IC50 values of 6.54, 15.54 and 6.13 µM compared to Taxol (6.68, 38.05, 12.32 µM) against Huh-7, A549 and MCF-7, respectively. Also, tubulin polymerization assay was carried out. The most potent compounds 3a, 3b, 5a and 5b could significantly inhibit tubulin polymerization with IC50 values of 15.6, 4.03, 6.06 and 12.61 µM, respectively. Compound 3b exhibited the highest tubulin polymerization inhibitory effect with an IC50 value of 4.03 µM compared to combretastatin (A-4) (1.64 µM). Molecular modeling studies of the designed compounds confirmed that most of the compounds made the essential binding interactions compared to the reference compound which assisted in the prediction of the structure requirements for the detected anticancer activity. Finally, in vivo studies showed that compound 3b could significantly inhibit breast cancer.

5.
Pharmaceutics ; 15(5)2023 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-37242628

RESUMO

Alzheimer's disease (AD) is a neurodegenerative disorder that jeopardizes the lives of diagnosed patients at late stages. This study aimed to assess, for the first time, the efficiency of germanium dioxide nanoparticles (GeO2NPs) in mitigating AD at the in vivo level compared to cerium dioxide nanoparticles (CeO2NPs). Nanoparticles were synthesized using the co-precipitation method. Their antioxidant activity was tested. For the bio-assessment, rats were randomly assigned into four groups: AD + GeO2NPs, AD + CeO2NPs, AD, and control. Serum and brain tau protein, phosphorylated tau, neurogranin, amyloid ß peptide 1-42, acetylcholinesterase, and monoamine oxidase levels were measured. Brain histopathological evaluation was conducted. Furthermore, nine AD-related microRNAs were quantified. Nanoparticles were spherical with diameters ranging from 12-27 nm. GeO2NPs exhibited a stronger antioxidant activity than CeO2NPs. Serum and tissue analyses revealed the regression of AD biomarkers to almost control values upon treatment using GeO2NPs. Histopathological observations strongly supported the biochemical outcomes. Then, miR-29a-3p was down-regulated in the GeO2NPs-treated group. This pre-clinical study substantiated the scientific evidence favoring the pharmacological application of GeO2NPs and CeO2NPs in AD treatment. Our study is the first report on the efficiency of GeO2NPs in managing AD. Further studies are needed to fully understand their mechanism of action.

6.
BMC Plant Biol ; 23(1): 193, 2023 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-37041463

RESUMO

BACKGROUND: Wheat is a major cereal that can narrow the gap between the increasing human population and food production. In this connection, assessing genetic diversity and conserving wheat genetic resources for future exploitation is very important for breeding new cultivars that may withstand the expected climate change. The current study evaluates the genetic diversity in selected wheat cultivars using ISSR and SCoT markers, the rbcL and matK chloroplast DNA barcoding, and grain surface sculpture characteristics. We anticipate that these objectives may prioritize using the selected cultivars to improve wheat production. The selected collection of cultivars may lead to the identification of cultivars adapted to a broad spectrum of climatic environments. RESULTS: Multivariate clustering analyses of the ISSR and SCoT DNA fingerprinting polymorphism grouped three Egyptian cultivars with cultivar El-Nielain from Sudan, cultivar Aguilal from Morocco, and cultivar Attila from Mexico. In the other group, cultivar Cook from Australia and cultivar Chinese-166 were differentiated from four other cultivars: cultivar Cham-10 from Syria, cultivar Seri-82 from Mexico, cultivar Inqalab-91 from Pakistan, and cultivar Sonalika from India. In the PCA analysis, the Egyptian cultivars were distinct from the other studied cultivars. The rbcL and matK sequence variation analysis indicated similarities between Egyptian cultivars and cultivar Cham-10 from Syria and cultivar Inqalab-91 from Pakistan, whereas cultivar Attila from Mexico was distinguished from all other cultivars. Combining the data of ISSR and SCoT with the rbcL and matK results retained the close resemblance among the two Egyptian cultivars EGY1: Gemmeiza-9 and EGY3: Sakha-93, and the Moroccan cultivar Aguilal, and the Sudanese cultivar El-Nielain and between Seri-82, Inqalab-91, and Sonalika cultivars. The analysis of all data distinguished cultivar Cham-10 from Syria from all other cultivars, and the analysis of grain traits indicated a close resemblance between cv. Cham-10 from and the two Egyptian cultivars Gemmeiza-9 and Sakha-93. CONCLUSIONS: The analysis of rbcL and matK chloroplast DNA barcoding agrees with the ISSR and the SCoT markers in supporting the close resemblance between the Egyptian cultivars, particularly Gemmeiza-9 and Sakha-93. The ISSR and SCoT data analyses significantly expressed high differentiation levels among the examined cultivars. Cultivars with closer resemblance may be recommended for breeding new wheat cultivars adapted to various climatic environments.


Assuntos
DNA de Cloroplastos , Triticum , Humanos , Grão Comestível , Melhoramento Vegetal , Polimorfismo Genético
7.
Steroids ; 193: 109187, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36736802

RESUMO

To identify new steroidal agents with potential biological activities, we synthesized hybrid steroids containing thiazole, pyrazole, isoxazole, thiophene or phthalazine moiety. Epi-androsterone 1 reacted with phenylthiosemicarbazide to afford the corresponding androstane-4-phenyl-3-thiosemicarbazone derivative 2. The latter product was used in the synthesis of a series of annulated steroid derivatives. Also, Epi-androsterone 1 reacted with the thienopyridazine derivative 16 to afford the thieno[3,4-d]pyridazino-N-ylidenoandrostane derivative 17. Compound 17 reacted readily with electron-poor olefins to yield the corresponding phthalazine steroid derivatives. Detailed experimental and spectroscopic evidences for the structures of the newly synthesized compounds are explained. Compounds 3, 7, 8a, 12a, 14, 17 and 21a, were investigated individually as anticancer agents on different panel of human malignant cell lines. Moreover, a computer modelling investigation was performed to speculate the macromolecular targets for the most promising candidate. The results revealed a concentration-dependent reduction in the number of viable cells in all cancer cell lines. Most notably, compound 7 was the most effective compound against all tested cancer cell lines, especially against HepG2 cell line; therefore, the mode of action of this compound against HCC was investigated. Compound 7 was able to induce cell cycle arrest, and DNA fragmentation in HepG2 cells. Moreover, compound 7 induced apoptosis via upregulating the expression of caspase-3, -8, -9, P53, Bax and inhibiting the expression of BCL2, and CDK2 genes. Our results highlighted compound 7 as a promising anti-hepatocellular carcinoma agent, with theoretical, and practical potential binding affinity with CDK2; therefore, more investigations are required to elucidate its chemotherapeutic value as anti-HCC agent.


Assuntos
Antineoplásicos , Carcinoma Hepatocelular , Neoplasias Hepáticas , Esteroides Heterocíclicos , Humanos , Simulação de Acoplamento Molecular , Esteroides Heterocíclicos/farmacologia , Androsterona , Antineoplásicos/química , Esteroides/farmacologia , Esteroides/uso terapêutico , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/patologia , Quinases Ciclina-Dependentes/farmacologia , Quinases Ciclina-Dependentes/uso terapêutico , Ensaios de Seleção de Medicamentos Antitumorais , Proliferação de Células , Estrutura Molecular
8.
Molecules ; 28(2)2023 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-36677798

RESUMO

A novel series of pyrido[2,3-d]pyrimidines; pyrido[3,2-e][1,3,4]triazolo; and tetrazolo[1,5-c]pyrimidines were synthesized via different chemical transformations starting from pyrazolo[3,4-b]pyridin-6-yl)-N,N-dimethylcarbamimidic chloride 3b (prepared from the reaction of o-aminonitrile 1b and phosogen iminiumchloride). The structures of the newly synthesized compounds were elucidated based on spectroscopic data and elemental analyses. Designated compounds are subjected for molecular docking by using Auto Dock Vina software in order to evaluate the antiviral potency for the synthesized compounds against SARS-CoV-2 (2019-nCoV) main protease M pro. The antiviral activity against SARS-CoV-2 showed that tested compounds 7c, 7d, and 7e had the most promising antiviral activity with lower IC50 values compared to Lopinavir, "the commonly used protease inhibitor". Both in silico and in vitro results are in agreement.


Assuntos
Antivirais , Pirimidinas , SARS-CoV-2 , Antivirais/farmacologia , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Inibidores de Proteases/farmacologia , Pirimidinas/farmacologia , Pirimidinas/química , SARS-CoV-2/efeitos dos fármacos
10.
Bioorg Chem ; 127: 105995, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35792315

RESUMO

Apparently, tubulin inhibitors binding to the colchicine-binding site (CBS) currently have outstanding attention for cancer treatment. So, a series of benzo[b]azonin-2-one derivatives having the same pharmacophoric features as colchicine binding site inhibitors (CBSIs) were synthesized targeting the CBS of ß-tubulin. The antiproliferative activities of the newly synthesized compounds were assessed against five different cancer cell lines; HepG-2, MCF-7, MDA-MB-231, HCT-116, and Caco-2. Compounds 7a and 7d displayed promising inhibitory activities against all tested cell lines. They were further estimated towards ß-tubulin at CBS along with colchicine (Col) as a reference drug. It was shown that the assessed candidates (7a and 7d) and Col exhibited CBSI activities of 5492, 3771, and 486c.p.m./mg protein, respectively, at a concentration of 10 µM. Furthermore, compound 7d was picked out to assess its effects on apoptosis and cell-cycle profile using Annexin V-FITC and PI staining assay. In addition, the apoptotic activity of 7d was investigated using gene expression analysis of apoptosis-related genes of P53, Bax, Caspases 3 and 9, and Bcl-2 in both treated and untreated cells. Moreover, compound 7d was further assessed through in vivo studies using solid Ehrlich carcinoma (SEC)-bearing mice. Furthermore, both molecular docking and molecular dynamics simulations (for 150 ns) were performed to investigate their mechanism of action as potential CBSIs and give more insights into the behavior of the examined candidates within the ß-tubulin subunit of the CBS. On the other hand, in silico ADMET studies were carried out to assess the pharmacokinetic features, drug/lead likeness, and toxicity parameters of the newly synthesized derivatives. Finally, to anticipate the possible changes in the antimitotic activities upon future structural modifications of the investigated compounds, a structure-activity relationship study (SAR) was accomplished.


Assuntos
Antineoplásicos , Tubulina (Proteína) , Animais , Antineoplásicos/química , Sítios de Ligação , Células CACO-2 , Proliferação de Células , Colchicina/farmacologia , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Camundongos , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Estrutura Molecular , Relação Estrutura-Atividade , Tubulina (Proteína)/metabolismo
11.
PLoS Pathog ; 18(1): e1010219, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-35025971

RESUMO

Excessive inflammation is a major cause of morbidity and mortality in many viral infections including influenza. Therefore, there is a need for therapeutic interventions that dampen and redirect inflammatory responses and, ideally, exert antiviral effects. Itaconate is an immunomodulatory metabolite which also reprograms cell metabolism and inflammatory responses when applied exogenously. We evaluated effects of endogenous itaconate and exogenous application of itaconate and its variants dimethyl- and 4-octyl-itaconate (DI, 4OI) on host responses to influenza A virus (IAV). Infection induced expression of ACOD1, the enzyme catalyzing itaconate synthesis, in monocytes and macrophages, which correlated with viral replication and was abrogated by DI and 4OI treatment. In IAV-infected mice, pulmonary inflammation and weight loss were greater in Acod1-/- than in wild-type mice, and DI treatment reduced pulmonary inflammation and mortality. The compounds reversed infection-triggered interferon responses and modulated inflammation in human cells supporting non-productive and productive infection, in peripheral blood mononuclear cells, and in human lung tissue. All three itaconates reduced ROS levels and STAT1 phosphorylation, whereas AKT phosphorylation was reduced by 4OI and DI but increased by itaconate. Single-cell RNA sequencing identified monocytes as the main target of infection and the exclusive source of ACOD1 mRNA in peripheral blood. DI treatment silenced IFN-responses predominantly in monocytes, but also in lymphocytes and natural killer cells. Ectopic synthesis of itaconate in A549 cells, which do not physiologically express ACOD1, reduced infection-driven inflammation, and DI reduced IAV- and IFNγ-induced CXCL10 expression in murine macrophages independent of the presence of endogenous ACOD1. The compounds differed greatly in their effects on cellular gene homeostasis and released cytokines/chemokines, but all three markedly reduced release of the pro-inflammatory chemokines CXCL10 (IP-10) and CCL2 (MCP-1). Viral replication did not increase under treatment despite the dramatically repressed IFN responses. In fact, 4OI strongly inhibited viral transcription in peripheral blood mononuclear cells, and the compounds reduced viral titers (4OI>Ita>DI) in A549 cells whereas viral transcription was unaffected. Taken together, these results reveal itaconates as immunomodulatory and antiviral interventions for influenza virus infection.


Assuntos
Vírus da Influenza A/imunologia , Macrófagos/imunologia , Infecções por Orthomyxoviridae/tratamento farmacológico , Succinatos/farmacologia , Células A549 , Animais , Carboxiliases/deficiência , Carboxiliases/imunologia , Citocinas/genética , Citocinas/imunologia , Humanos , Macrófagos/virologia , Camundongos , Camundongos Knockout , Infecções por Orthomyxoviridae/genética , Infecções por Orthomyxoviridae/imunologia , Células THP-1
12.
ACS Omega ; 7(1): 875-899, 2022 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-35036753

RESUMO

Cancer is a leading cause of death worldwide and its incidence is unfortunately anticipated to rise in the next years. On the other hand, vascular endothelial growth factor receptor 2 (VEGFR-2) is highly expressed in tumor-associated endothelial cells, where it affects tumor-promoting angiogenesis. Therefore, VEGFR-2 is considered one of the most promising therapeutic targets for cancer treatment. Furthermore, some FDA-approved benzimidazole anthelmintics have already shown potential anticancer activities. Therefore, repurposing them against VEGFR-2 can provide a rapid and effective alternative that can be implicated safely for cancer treatment. Hence, 13 benzimidazole anthelmintic drugs were subjected to molecular docking against the VEGFR-2 receptor. Among the tested compounds, fenbendazole (FBZ, 1), mebendazole (MBZ, 2), and albendazole (ABZ, 3) were proposed as potential VEGFR-2 antagonists. Furthermore, molecular dynamics simulations were carried out at 200 ns, giving more information on their thermodynamic and dynamic properties. Besides, the anticancer activity of the aforementioned drugs was tested in vitro against three different cancer cell lines, including liver cancer (HUH7), lung cancer (A549), and breast cancer (MCF7) cell lines. The results depicted potential cytotoxic activity especially against both HUH7 and A549 cell lines. Furthermore, to improve the aqueous solubility of MBZ, it was formulated in the form of mixed micelles (MMs) which showed an enhanced drug release with better promising cytotoxicity results compared to the crude MBZ. Finally, an in vitro quantification for VEGFR-2 concentration in treated HUH7 cells has been conducted based on the enzyme-linked immunosorbent assay. The results disclosed that FBZ, MBZ, and ABZ significantly (p < 0.001) reduced the concentration of VEGFR-2, while the lowest inhibition was achieved in MBZ-loaded MMs, which was even much better than the reference drug sorafenib. Collectively, the investigated benzimidazole anthelmintics could be encountered as lead compounds for further structural modifications and thus better anticancer activity, and that was accomplished through studying their structure-activity relationships.

13.
J Biomol Struct Dyn ; 40(10): 4352-4365, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-33300466

RESUMO

The IL6/JAK2/STAT3 axis dysregulation and the related downstream pathways are a major contributor to the progression of non-small-cell lung carcinoma (NSCLC) and mainly affect apoptosis. Furthermore, tubulin inhibitors are potential chemotherapeutic agents against NSCLC. In this study, we have provided new molecular insights into the antiproliferative activity of six 3ß-acetoxy-5α-androstane heterocycle compounds against NSCLC. The cell line A549, which represents a good model of NSCLC, was used to evaluate the antitumour activity of tested androstane derivatives, and non-cancerous gingival mesenchymal stem cell line (GMSC) were used to assess the specificity and toxicity of the tested compounds. Further on, molecular docking predictions were used to determine the molecular targets for the most promising cytotoxic compound. To assess apoptosis and cell cycle progression in treated A549 cells, flow cytometry was used. RT-qPCR and ELISA analyses were used to gain deep insights into cellular and molecular mechanisms. Results revealed that compound 4 has potential cytotoxicity on A549 cells, with lower IC50 value (27.36 µM). Moreover, in silico, compound 4 showed a good binding affinity to JAK2 and tubulin-colchicine soblidotin molecular targets. This was further confirmed on the molecular level. Compound 4 has also led to apoptosis and increased fragmentation of DNA, and mitochondrial dysfunction. Our findings have provided good evidence that compound 4 may be a dual inhibitor of IL6/JAK2/STAT3 and tubulin formation in lung cancer. These findings support further molecular exploration of this androstane derivative as promising anti-lung cancer agent.Communicated by Ramaswamy H. Sarma.


Assuntos
Antineoplásicos , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Androstanos/farmacologia , Antineoplásicos/química , Antineoplásicos/farmacologia , Apoptose , Linhagem Celular Tumoral , Proliferação de Células , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Interleucina-6 , Neoplasias Pulmonares/tratamento farmacológico , Simulação de Acoplamento Molecular , Tubulina (Proteína)/metabolismo
14.
Anticancer Agents Med Chem ; 22(5): 978-990, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34126912

RESUMO

BACKGROUND: Pyrimidine-5-carbonitrile has a broad spectrum of biological activities such as antiviral, antioxidant, and anticancer activities. Among similar compounds, monastrol is the most prominent cell-permeant inhibitor of mitosis; therefore, we investigated the new Pyrimidine-5-carbonitrile as a cytotoxic agent for the p53 pathway. OBJECTIVE: Several new benzyloxyphenyl pyrimidine-5-carbonitrile derivatives were designed, synthesized, and characterized, and their cytotoxicity was evaluated. The most active compounds were tested for their activity against p53 as a mechanistic target for antiproliferative action. METHODS: The key intermediate tetrahydropyrimidine-5-carbonitrile derivative 4 was prepared by a multicomponent reaction (MCR) of the Biginelli type. S-alkylation of the key intermediate with the required alkyl or aralkyl halides or refluxing 4 with POCl3 followed by an amino acid yielded the target compounds. The cytotoxicity of 5c-e, 7a-c, 9, 10a, b, and 11 was evaluated using the A549 cell line of human lung adenocarcinoma, HepG2 liver cell line, and MDAMB- 231 cell line of breast cancer using the MTT assay. The transcription effects of 7a, 7c, and 11 on the p53 were assessed and compared with the reference doxorubicin. RESULTS: Compounds 7a, 7c, and 11 have the highest cytotoxic effect when applied to most cancer cells. The tested compounds with 5-FU showed a significant increase in the anticancer activity more than 5-FU alone. Compounds 7a, 7c, and 11 increased the level of active caspase 3 by 4-6-fold compared to untreated control cells in the human liver cancer cell line (HepG2). Compounds 7a, 7c, and 11 increased the levels of caspase 8 and 9, indicating activation of both intrinsic and extrinsic pathways and showing potent induction of Bax, down-regulation of Bcl-2 protein levels, and over-expression of Cytochrome C levels in HepG2 cell lines. Compound 11 exhibited cell cycle arrest at the Pre- G1 and G2/M phases in the cell cycle analysis of the HepG2 cell line. The results revealed an increase of 12.40-19.10 in p53 level compared to the test cells and that p53 protein level of 7a, 7c, and 11 was significantly inductive (636, 861, and 987 pg/mL, respectively) in relation to doxorubicin (1263 pg/mL). CONCLUSION: Pyrimidine-5-carbonitrile derivatives have potent apoptotic and antiproliferative properties.


Assuntos
Antineoplásicos , Proteína Supressora de Tumor p53 , Antineoplásicos/química , Antineoplásicos/farmacologia , Apoptose , Linhagem Celular Tumoral , Proliferação de Células , Doxorrubicina/farmacologia , Ensaios de Seleção de Medicamentos Antitumorais , Fluoruracila/farmacologia , Humanos , Estrutura Molecular , Pirimidinas/química , Pirimidinas/farmacologia , Relação Estrutura-Atividade
15.
J Enzyme Inhib Med Chem ; 37(1): 299-314, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34894955

RESUMO

This research presents the design and synthesis of a novel series of phthalazine derivatives as Topo II inhibitors, DNA intercalators, and cytotoxic agents. In vitro testing of the new compounds against HepG-2, MCF-7, and HCT-116 cell lines confirmed their potent cytotoxic activity with low IC50 values. Topo II inhibition and DNA intercalating activities were evaluated for the most cytotoxic members. IC50 values determination demonstrated Topo II inhibitory activities and DNA intercalating affinities of the tested compounds at a micromolar level. Amongst, compound 9d was the most potent member. It inhibited Topo II enzyme at IC50 value of 7.02 ± 0.54 µM with DNA intercalating IC50 of 26.19 ± 1.14 µM. Compound 9d was then subjected to an in vivo antitumor examination. It inhibited tumour proliferation reducing solid tumour volume and mass. Additionally, it restored liver enzymes, proteins, and CBC parameters near-normal, indicating a remarkable amelioration in their functions along with histopathological examinations.


Assuntos
Antineoplásicos/farmacologia , DNA Topoisomerases Tipo II/metabolismo , DNA/química , Desenho de Fármacos , Simulação de Acoplamento Molecular , Ftalazinas/farmacologia , Inibidores da Topoisomerase II/farmacologia , Animais , Antineoplásicos/síntese química , Antineoplásicos/química , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Camundongos , Estrutura Molecular , Neoplasias Experimentais/tratamento farmacológico , Neoplasias Experimentais/metabolismo , Neoplasias Experimentais/patologia , Ftalazinas/síntese química , Ftalazinas/química , Relação Estrutura-Atividade , Inibidores da Topoisomerase II/síntese química , Inibidores da Topoisomerase II/química , Células Tumorais Cultivadas
16.
Vaccines (Basel) ; 9(11)2021 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-34835248

RESUMO

Respiratory viruses represent a major public health concern, as they are highly mutated, resulting in new strains emerging with high pathogenicity. Currently, the world is suffering from the newly evolving severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). This virus is the cause of coronavirus disease 2019 (COVID-19), a mild-to-severe respiratory tract infection with frequent ability to give rise to fatal pneumonia in humans. The overwhelming outbreak of SARS-CoV-2 continues to unfold all over the world, urging scientists to put an end to this global pandemic through biological and pharmaceutical interventions. Currently, there is no specific treatment option that is capable of COVID-19 pandemic eradication, so several repurposed drugs and newly conditionally approved vaccines are in use and heavily applied to control the COVID-19 pandemic. The emergence of new variants of the virus that partially or totally escape from the immune response elicited by the approved vaccines requires continuous monitoring of the emerging variants to update the content of the developed vaccines or modify them totally to match the new variants. Herein, we discuss the potential therapeutic and prophylactic interventions including repurposed drugs and the newly developed/approved vaccines, highlighting the impact of virus evolution on the immune evasion of the virus from currently licensed vaccines for COVID-19.

17.
Life Sci ; 285: 119961, 2021 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-34536497

RESUMO

AIM: Hepatocellular carcinoma (HCC) is a potentially life-threatening cancer. In the current study, anti-HCC efficacy of amygdalin, or metformin alone or in combination in comparison to doxorubicin was studied. MAIN METHODS: Both in-vitro and in-vivo based models. HepG-2 and Huh-7 cell lines as established in-vitro model for HCC were treated with different concentrations of indicated drugs to evaluate the cytotoxicity and determine IC50 for 24, 48 and 72 h. Moreover, the effect of different treatments on apoptosis and cell cycle using flow cytometric analysis were studied. Hepatocellular carcinoma induced in rats by diethyl-nitrosamine and carbon tetrachloride was established, to further investigate the efficacy of indicated drugs. Aspartate aminotransferase, alanine aminotransferase and alkaline phosphatase were measured by spectrophotometer, alpha-fetoprotein, cytochrome-c, caspase-3 and malondialdehyde were measured by ELISA, and liver biopsies were also evaluated histopathologically. KEY FINDINGS: In-vitro results showed that the combination has a promising effect when compared to amygdalin or metformin alone as it is more cytotoxic and have higher ability for induction of apoptosis and arresting cell cycle. In-vivo doxorubicin has a good effect for treating HCC. Also, the combination showed a promising prognostic effect depending on the cytotoxic activity and tumor marker when compared to amygdalin or metformin alone. SIGNIFICANCE: Based on the current data, it was hypothesized that amygdalin and metformin especially when used in combination will be a promising approach with low side effects for enhancement of HCC.


Assuntos
Amigdalina/uso terapêutico , Antibióticos Antineoplásicos/uso terapêutico , Antineoplásicos Fitogênicos/uso terapêutico , Protocolos Antineoplásicos , Carcinoma Hepatocelular/tratamento farmacológico , Doxorrubicina/uso terapêutico , Neoplasias Hepáticas/tratamento farmacológico , Metformina/uso terapêutico , Animais , Biomarcadores Tumorais/sangue , Carcinoma Hepatocelular/patologia , Dietilnitrosamina , Células Hep G2 , Humanos , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas Experimentais/induzido quimicamente , Masculino , Prognóstico , Ratos , Ratos Wistar , alfa-Fetoproteínas/análise
18.
Bioorg Chem ; 112: 104953, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33964581

RESUMO

The reaction of an alkyl or aryl isocyanates with some primary amines in acetonitrile at room temperature afforded the corresponding alkyl- and aryl-urea derivatives. All the prepared urea compounds have been elucidated by FTIR, NMR, and elemental analysis. The compounds 1 and 3 were confirmed by single-crystal X-ray diffraction. The 4-tolylsulfonyl isocyanate reacted with the aryl amines 1, 2, 3, and 2,4-dichloroaniline to afford the corresponding sulfonylurea derivatives 5-8. Likewise, the reaction of the isocyanates with 2,4-dichloroaniline, 5-methyl isoxazole-3-amine, and 2-aminothiazole derivatives gave the corresponding urea derivatives 9-17. All the prepared compounds 5-17 were tested in vitro as anti-microbial and anti-HepG2 agents. Moreover, analyzing gene expression of TP53-exon4 and TP53-exon7, DNA damage values, and DNA fragmentation percentages have been discussed. The compounds 5 and 8 recorded the highest activity against the tested microbial strains with maximum activity against C. albicans (50 mm) and B. mycoides (40 mm), respectively. The compounds 5 inhibited the growth of E. coli, S. aureus, and C. Albicans at the MIC level of 0.0489 µM, while the compound 8 was able to inhibit the visible growth of E. coli and C. albicans at MIC value of 3.13 µM and S. aureus at 0.3912 µM. In the same line, compound 5 showed the best cytotoxic activity against the HepG2 cell line (IC50 = 4.25 µM) compared to 5 fluorouracil with IC50 = 316.25 µM. Expression analysis of liver cancer related to a gene including TP53-exon4 and TP53-exon7 was used in HepG2 Liver cancer cell lines using RT-qPCR. The expression values of TP53-exon4 and TP53-exon7 genes were decreased. The DNA damage values and DNA fragmentation percentages were increased significantly (P < 0.01) in the treated HepG2 (5) sample compared with the negative control. Docking studies were performed for the synthetic compounds against 2 bacterial proteins (DNA gyrase subunit B, and penicillin binding protein 1a) that are known targets for some antibiotics, and one cell division protein kinase 2 (CDK2) as target for anticancer drugs.


Assuntos
Antibacterianos/farmacologia , Antifúngicos/farmacologia , Antineoplásicos/farmacologia , Ureia/farmacologia , Antibacterianos/síntese química , Antibacterianos/química , Antifúngicos/síntese química , Antifúngicos/química , Antineoplásicos/síntese química , Antineoplásicos/química , Bacillus/efeitos dos fármacos , Candida albicans/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Escherichia coli/efeitos dos fármacos , Células Hep G2 , Humanos , Testes de Sensibilidade Microbiana , Estrutura Molecular , Staphylococcus aureus/efeitos dos fármacos , Relação Estrutura-Atividade , Células Tumorais Cultivadas , Ureia/análogos & derivados , Ureia/química
19.
Molecules ; 26(6)2021 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-33803877

RESUMO

A novel series of N-1 arylidene amino imidazole-2-thiones were synthesized, identified using IR, 1H-NMR, and 13C-NMR spectral data. Cytotoxic effect of the prepared compounds was carried out utilizing three cancer cell lines; MCF-7 breast cancer, HepG2 liver cancer, and HCT-116 colon cancer cell lines. Imidazole derivative 5 was the most potent of all against three cell lines. DNA flow cytometric analysis showed that, imidazoles 4d and 5 exhibit pre-G1 apoptosis and cell cycle arrest at G2/M phase. The results of the VEGFR-2 and B-Raf kinase inhibition assay revealed that compounds 4d and 5 displayed good inhibitory activity compared with reference drug erlotinib.


Assuntos
Antineoplásicos/química , Antineoplásicos/farmacologia , Imidazóis/química , Imidazóis/farmacologia , Antineoplásicos/síntese química , Apoptose/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Cloridrato de Erlotinib/farmacologia , Pontos de Checagem da Fase G2 do Ciclo Celular/efeitos dos fármacos , Células HCT116 , Células Hep G2 , Humanos , Imidazóis/síntese química , Técnicas In Vitro , Células MCF-7 , Simulação de Acoplamento Molecular , Proteínas Proto-Oncogênicas B-raf/antagonistas & inibidores , Relação Estrutura-Atividade , Tionas/síntese química , Tionas/química , Tionas/farmacologia , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/antagonistas & inibidores , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/química
20.
BMC Complement Med Ther ; 21(1): 51, 2021 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-33546663

RESUMO

BACKGROUND: Chlorella vulgaris is a microalga potentially used for pharmaceutical, animal feed, food supplement, aquaculture and cosmetics. The current study aims to study the antioxidant and prooxidant effect of Chlorella vulgaris cultivated under various conc. of copper ions. METHODS: The axenic green microalgal culture of Chlorella vulgaris was subjected to copper stress conditions (0.00, 0.079, 0.158, 0.316 and 0.632 mg/L). The growth rate was measured at OD680 nm and by dry weight (DW). Moreover, the Antioxidant activity against DPPH and ABTS radical, pigments and phytochemical compounds of the crude extracts (methylene chloride: Methanol, 1:1) were evaluated. The promising Cu crude extract (0.316 mg/L) further fractionated into twenty-one fractions by silica gel column chromatography using hexane, chloroform and ethyl acetate as a mobile phase. RESULTS: The obtained results reported that nine out of these fractions exhibited more than 50% antioxidant activity and anticancer activity against Hela cancer cell lines. Based on IC50, fraction No. 7 was found to be the most effective fraction possessing a significant increase in both antioxidant and anticancer potency. Separation of active compound (s) in fraction No 7 was performed using precoated silica gel plates (TLC F254) with ethyl acetate: hexane (9:1 v/v) as mobile phase. Confirmation of active compound separation was achieved by two-dimensional TLC and visualization of the separated compound by UV lamp. The complete identification of the separated active compound was performed by UV- Vis- spectrophotometric absorption, IR, MS, H1-NMRT C13-NMR. The isolated compound ((2E,7R,11R)-3,7,11,15-Tetramethyl-2-hexadecenol) have high antioxidant activity with IC50 (10.59 µg/ml) against DPPH radical assay and comparable to the capacities of the positive controls, Butylated hydroxy toluene [BHT] (IC50 11.2 µg/ml) and Vitamin C (IC50 12.9 µg/ml). Furthermore, pure isolated compound exhibited a potent anticancer activity against Hela cell line with IC50 (4.38 µg/ml) compared to Doxorubicin (DOX) as synthetic drug (13.3 µg/ml). In addition, the interaction of the pure compound with Hela cancer cell line and gene expression were evaluated. CONCLUSIONS: The authors recommend cultivation of Chlorella vulgaris in large scale under various stress conditions for use the crude extracts and semi purified fractions for making a pharmaco-economic value in Egypt and other countries.


Assuntos
Antineoplásicos/farmacologia , Antioxidantes/farmacologia , Chlorella vulgaris , Cobre/metabolismo , Extratos Vegetais/farmacologia , Antineoplásicos/química , Antioxidantes/química , Compostos de Bifenilo , Técnicas de Cultura de Células , Sobrevivência Celular/efeitos dos fármacos , Chlorella vulgaris/química , Chlorella vulgaris/metabolismo , Células HeLa , Humanos , Picratos , Extratos Vegetais/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...