Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biosystems ; 204: 104393, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33640397

RESUMO

Hierarchical structures which lie hidden between human complex conditions and reproductivity cannot be simple, and trends of each population component does not necessarily pertain to evolutionary theories. As an illustration, the fitness of individuals with heritable extreme conditions can be low across continuing generations in observational data. Autism and schizophrenia are characterized by such evolutionary paradox of survival and hypo-reproductivity in the complex human diversity. Theoretical mechanisms for the observational fact were evaluated using a simple formula which was established to simulate stochastic epistasis-mediated phenotypic diversity. The survival of the hypo-reproductive extreme tail could be imitated just by the predominant presence of stochastic epistasis mechanism, suggesting that stochastic epistasis might be a genetic prerequisite for the evolutionary paradox. As supplemental cofactors of stochastic epistasis, a random link of the extreme tail to both un- and hyper-reproductivity and group assortative mating were shown to be effective for the paradox. Especially, the mixed localization of un- and hyper-reproductivity in the tail of a generational population evidently induced the continuous survival of outliers and extremes. These hypothetical considerations and mathematical simulations may suggest the significance of stochastic epistasis as the essential genetic background of complex human diversity.


Assuntos
Transtorno Autístico/genética , Aptidão Genética , Comportamento Reprodutivo , Esquizofrenia/genética , Evolução Biológica , Simulação por Computador , Humanos , Modelos Teóricos , Distribuição Normal , Processos Estocásticos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...