Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Bioengineering (Basel) ; 10(7)2023 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-37508852

RESUMO

Early detection of breast lesions and distinguishing between malignant and benign lesions are critical for breast cancer (BC) prognosis. Breast ultrasonography (BU) is an important radiological imaging modality for the diagnosis of BC. This study proposes a BU image-based framework for the diagnosis of BC in women. Various pre-trained networks are used to extract the deep features of the BU images. Ten wrapper-based optimization algorithms, including the marine predator algorithm, generalized normal distribution optimization, slime mold algorithm, equilibrium optimizer (EO), manta-ray foraging optimization, atom search optimization, Harris hawks optimization, Henry gas solubility optimization, path finder algorithm, and poor and rich optimization, were employed to compute the optimal subset of deep features using a support vector machine classifier. Furthermore, a network selection algorithm was employed to determine the best pre-trained network. An online BU dataset was used to test the proposed framework. After comprehensive testing and analysis, it was found that the EO algorithm produced the highest classification rate for each pre-trained model. It produced the highest classification accuracy of 96.79%, and it was trained using only a deep feature vector with a size of 562 in the ResNet-50 model. Similarly, the Inception-ResNet-v2 had the second highest classification accuracy of 96.15% using the EO algorithm. Moreover, the results of the proposed framework are compared with those in the literature.

2.
Cancers (Basel) ; 15(7)2023 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-37046840

RESUMO

Skin cancer is one of the most lethal kinds of human illness. In the present state of the health care system, skin cancer identification is a time-consuming procedure and if it is not diagnosed initially then it can be threatening to human life. To attain a high prospect of complete recovery, early detection of skin cancer is crucial. In the last several years, the application of deep learning (DL) algorithms for the detection of skin cancer has grown in popularity. Based on a DL model, this work intended to build a multi-classification technique for diagnosing skin cancers such as melanoma (MEL), basal cell carcinoma (BCC), squamous cell carcinoma (SCC), and melanocytic nevi (MN). In this paper, we have proposed a novel model, a deep learning-based skin cancer classification network (DSCC_Net) that is based on a convolutional neural network (CNN), and evaluated it on three publicly available benchmark datasets (i.e., ISIC 2020, HAM10000, and DermIS). For the skin cancer diagnosis, the classification performance of the proposed DSCC_Net model is compared with six baseline deep networks, including ResNet-152, Vgg-16, Vgg-19, Inception-V3, EfficientNet-B0, and MobileNet. In addition, we used SMOTE Tomek to handle the minority classes issue that exists in this dataset. The proposed DSCC_Net obtained a 99.43% AUC, along with a 94.17%, accuracy, a recall of 93.76%, a precision of 94.28%, and an F1-score of 93.93% in categorizing the four distinct types of skin cancer diseases. The rates of accuracy for ResNet-152, Vgg-19, MobileNet, Vgg-16, EfficientNet-B0, and Inception-V3 are 89.32%, 91.68%, 92.51%, 91.12%, 89.46% and 91.82%, respectively. The results showed that our proposed DSCC_Net model performs better as compared to baseline models, thus offering significant support to dermatologists and health experts to diagnose skin cancer.

3.
Diagnostics (Basel) ; 12(11)2022 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-36359469

RESUMO

Rapid advancements and the escalating necessity of autonomous algorithms in medical imaging require efficient models to accomplish tasks such as segmentation and classification. However, there exists a significant dependency on the image quality of datasets when using these models. Appreciable improvements to enhance datasets for efficient image analysis have been noted in the past. In addition, deep learning and machine learning are vastly employed in this field. However, even after the advent of these advanced techniques, a significant space exists for new research. Recent research works indicate the vast applicability of preprocessing techniques in segmentation tasks. Contrast stretching is one of the preprocessing techniques used to enhance a region of interest. We propose a novel hybrid meta-heuristic preprocessor (DE-ABC), which optimises the decision variables used in the contrast-enhancement transformation function. We validated the efficiency of the preprocessor against some state-of-the-art segmentation algorithms. Publicly available skin-lesion datasets such as PH2, ISIC-2016, ISIC-2017, and ISIC-2018 were employed. We used Jaccard and the dice coefficient as performance matrices; at the maximum, the proposed model improved the dice coefficient from 93.56% to 94.09%. Cross-comparisons of segmentation results with the original datasets versus the contrast-stretched datasets validate that DE-ABC enhances the efficiency of segmentation algorithms.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...