Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Heliyon ; 9(3): e13580, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36895391

RESUMO

Skin areas exposed to ultraviolet radiation (UV) from sunlight are more prone to photoaging than unexposed areas evidenced by several signs which include skin dryness, irregular pigmentation, lentigines, hyperpigmentation, wrinkling, and decreased elasticity. Plant-based natural product ingredients with therapeutic potential against skin photoaging are gaining more attention. This article aims the reviewing the research work done in exploring the cellular and molecular mechanisms involved in UV-induced skin photoaging, followed by summarizing the mechanistic insights involved in its therapeutics by natural product-based ingredients. In the mechanistic section of the convoluted procedure of photoaging, we described the effect of UV radiation (UVR) on different cellular macromolecules (direct damage) and subsequently, the deleterious consequences of UVR-generated reactive oxygen species (indirect damage) and signaling pathways activated or inhibited by UV induced ROS generation in various cellular pathologies of skin photoaging like inflammation, extracellular matrix degradation, apoptosis, mitochondrial dysfunction, and immune suppression. We also discussed the effect of UV radiation on the adipose tissue, and transient receptor potential cation channel V of photoaging skin. In the past few decades, mechanistic studies performed in this area have deciphered various therapeutic targets, opening avenues for different available therapeutic options against this pathological condition. So the remaining portion of the review deals with various natural product-based therapeutic agents available against skin photodamage.

2.
Exp Gerontol ; 171: 112028, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36384201

RESUMO

BACKGROUND: DNA is the main target for UV-B-irradiation-induced skin photodamage and accounts for 90 % of all the non-melanoma skin cancers. PURPOSE: In this study, we explored the mechanistic basis of photoprotective effect of Trigonelline, a naturally occurring alkaloid from the Trigonella foenum-graecum, against UV-B-induced oxidative DNA Damage Response using Primary Human Dermal Fibroblasts (HDFs) and BALB/C mice as models of skin photodamage. METHODS: Primary HDFs were subjected to UV-B exposure (10 mJ/cm2) with or without TG for 24 h. Effect of UV-B exposure and TG treatment was evaluated by analyzing the cell survival, cellular morphology, oxidative stress & DNA damage response markers by performing biochemical studies, florescent microscopy & protein expression studies. In in-vivo study, TG pre-treated BALB/c mice were -irradiated with 180 mJ/cm2 of UV-B dose thrice a week on alternative days for four months, followed by topical application of different concentrations of TG. The photodamage caused by UV-B exposure and its ameleoriation by topical treatment of TG was studied by physical and morphological appearance and analyzing the oxidative stress & DNA damage response markers from skin. RESULTS: We found that TG significantly alleviates UV-B-induced cell death effects in HDFs. TG protects HDF cells and BALB/c mice from UV-B-induced DNA damage by regulating the expression profile of key protein markers of DNA damage which include P53, ATM, ATR, ϒH2AX, Chk1 and Chk2. We found that TG offers geno-protection to UV-B-irradiated HDFs by alleviating CPD induction, reducing the number of TUNEL positive cells and by decreasing the expression levels of DNA damage marker protein ϒH2AX in immunocytochemistry. Further, we found that TG prevents the UVB induced oxidative stress by activating the PI3K-AKT-Nrf2 signalling pathway. On employing PI3K inhibitor, LY294002, we found the expression of ϒH2AX and p-P53 is significantly increased compared to UV-B treated only, indicating that TG mediates the geno-protection against UV-B irradiation via PI3K-AKT-Nrf2 signalling pathway. CONCLUSION: Current study presents for the first time the photo-protective role of TG against UV-B-induced oxidative DNA damage and provides its mechanistic insights also and provide strong evidence for TG to be carried forward as a potential remedial and cosmeceutical agent against UV-B-induced skin photodamage disorders.


Assuntos
Fosfatidilinositol 3-Quinase , Fosfatidilinositol 3-Quinases , Camundongos , Animais , Humanos , Fosfatidilinositol 3-Quinases/metabolismo , Fosfatidilinositol 3-Quinase/metabolismo , Camundongos Endogâmicos BALB C , Proteína Supressora de Tumor p53/metabolismo , Estresse Oxidativo , Pele/metabolismo , Fibroblastos , Raios Ultravioleta/efeitos adversos , Dano ao DNA , Espécies Reativas de Oxigênio/metabolismo
3.
Photochem Photobiol ; 97(4): 785-794, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33345344

RESUMO

Cutaneous photodamage is incited via exposure of ultraviolet-B (UV-B) radiation to skin, characterized by the manifestation of oxidative stress, inflammation, collagen degradation and apoptosis which translates to external aging signs such as wrinkle formation and leathery skin appearance. Meanwhile, it increases cellular susceptibility to photocarcinogenesis. Several studies have accumulated evidence regarding the usage of natural agents in reversing the clinical signs of photoaging as well as preventing photo-toxicity at molecular level. In this study, we have explored the therapeutic potential of natural agent Trigonelline (TG) against UV-B radiation mediated skin photodamage. Various parameters modulated by the exposure of UV-B radiation were investigated in human skin cells and chronic photodamage mice model (Balb/c). We found that TG alleviates UV-B radiation induced photodamage in human skin cells and Balb/c skin mice. TG treatment in UV-B irradiated skin cells abates UV-B radiation mediated phototoxicity, oxidative stress, inflammation and apoptosis. At molecular level, we observed TG treatment significantly prevents the reactive oxygen species (ROS) generation and lipid peroxidation, restores collagen synthesis and matrix metalloproteinase (MMPs) levels. The in vitro findings were replicated in the in vivo model. We found that the TG acts potentially via modulation of ROS-MAPKs-NF-κB axis. Collectively, we propose that TG acts antagonistically against UV-B mediated skin damage and has strong potential to be developed as a therapeutic and cosmetical agent against photodamage disorders.


Assuntos
Transdução de Sinais , Alcaloides , Animais , Colágeno , Fibroblastos , Inflamação , Camundongos , Proteínas Quinases Ativadas por Mitógeno , Mitógenos , NF-kappa B/genética , Proteínas Quinases , Espécies Reativas de Oxigênio
4.
Cell Physiol Biochem ; 53(1): 242-257, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31313540

RESUMO

BACKGROUND/AIMS: Excessive exposure to UV radiation negatively affects the human skin, characterized by photo-damage (premature aging & carcinogenesis). UV-B radiation causes about 90% of non-melanoma skin cancers by damaging de-oxy ribonucleic acids (DNA). We have previously reported that UV-B radiation induces skin photodamage through oxidative & Endoplasmic Reticulum (ER) stresses and Glycyrrhizic acid (GA), a natural triterpene, protects skin cells against such stresses. UV-B radiation elicits signalling cascade by activation of proteins involved in sensing, signalling, and repair process of DNA damage. In this study, we explored the effects & mechanisms of Glycyrrhizic acid (GA) against UV-B -induced photodamage using a well established cellular model. METHODS: We used primary human dermal fibroblasts as a cellular model. The cells were cultured in the presence or absence of GA for 3,6, & 24 h. Effect of UV-B was assessed by examining cell viability, cell morphology, oxidative stress, ER stress, DNA damage & cellular autophagy levels through biochemical assays, microscopy & protein expression studies. RESULTS: In this study, we have determined the effect of GA on autophagy mediated DNA damage response system as the main mechanism in preventing photodamage due to UV-B -irradiation to primary human dermal fibroblasts (HDFs). GA treatment to UV-B exposed HDFs, significantly inhibited cell death, oxidative & ER stress responses, prevented Cyclobutane Pyrimidine dimer (CPD) DNA adduct formation, and DNA fragmentation via modulation of UV-B induced autophagic flux. Present results showed that GA treatment quenched reactive oxygen species (ROS), relieved ER stress response, improved autophagy (6 hr's post-UV-B -irradiation) and prevented UV-B induced DNA damage. CONCLUSION: The present study links autophagy induction by GA as the main mechanism in the prevention of DNA damage and provides a mechanistic basis for the photoprotective effect of GA and suggests that GA can be potentially developed as a promising agent against UV-B induced skin photo-damage.


Assuntos
Autofagia , Derme/metabolismo , Fibroblastos/metabolismo , Ácido Glicirrízico/farmacologia , Estresse Oxidativo , Raios Ultravioleta/efeitos adversos , Autofagia/efeitos dos fármacos , Autofagia/efeitos da radiação , Células Cultivadas , Derme/patologia , Fibroblastos/patologia , Humanos , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/efeitos da radiação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...