Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Neural Eng ; 21(2)2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38547534

RESUMO

Objective.We analyze and interpret arm and forearm muscle activity in relation with the kinematics of hand pre-shaping during reaching and grasping from the perspective of human synergistic motor control.Approach.Ten subjects performed six tasks involving reaching, grasping and object manipulation. We recorded electromyographic (EMG) signals from arm and forearm muscles with a mix of bipolar electrodes and high-density grids of electrodes. Motion capture was concurrently recorded to estimate hand kinematics. Muscle synergies were extracted separately for arm and forearm muscles, and postural synergies were extracted from hand joint angles. We assessed whether activation coefficients of postural synergies positively correlate with and can be regressed from activation coefficients of muscle synergies. Each type of synergies was clustered across subjects.Main results.We found consistency of the identified synergies across subjects, and we functionally evaluated synergy clusters computed across subjects to identify synergies representative of all subjects. We found a positive correlation between pairs of activation coefficients of muscle and postural synergies with important functional implications. We demonstrated a significant positive contribution in the combination between arm and forearm muscle synergies in estimating hand postural synergies with respect to estimation based on muscle synergies of only one body segment, either arm or forearm (p< 0.01). We found that dimensionality reduction of multi-muscle EMG root mean square (RMS) signals did not significantly affect hand posture estimation, as demonstrated by comparable results with regression of hand angles from EMG RMS signals.Significance.We demonstrated that hand posture prediction improves by combining activity of arm and forearm muscles and we evaluate, for the first time, correlation and regression between activation coefficients of arm muscle and hand postural synergies. Our findings can be beneficial for myoelectric control of hand prosthesis and upper-limb exoskeletons, and for biomarker evaluation during neurorehabilitation.


Assuntos
Braço , Antebraço , Humanos , Braço/fisiologia , Eletromiografia/métodos , Músculo Esquelético/fisiologia , Mãos/fisiologia , Postura/fisiologia
2.
Artigo em Inglês | MEDLINE | ID: mdl-37450365

RESUMO

We propose a neuromorphic framework to process the activity of human spinal motor neurons for movement intention recognition. This framework is integrated into a non-invasive interface that decodes the activity of motor neurons innervating intrinsic and extrinsic hand muscles. One of the main limitations of current neural interfaces is that machine learning models cannot exploit the efficiency of the spike encoding operated by the nervous system. Spiking-based pattern recognition would detect the spatio-temporal sparse activity of a neuronal pool and lead to adaptive and compact implementations, eventually running locally in embedded systems. Emergent Spiking Neural Networks (SNN) have not yet been used for processing the activity of in-vivo human neurons. Here we developed a convolutional SNN to process a total of 467 spinal motor neurons whose activity was identified in 5 participants while executing 10 hand movements. The classification accuracy approached 0.95 ±0.14 for both isometric and non-isometric contractions. These results show for the first time the potential of highly accurate motion intent detection by combining non-invasive neural interfaces and SNN.


Assuntos
Neurônios Motores , Dispositivos Eletrônicos Vestíveis , Humanos , Neurônios Motores/fisiologia , Redes Neurais de Computação , Mãos , Reconhecimento Psicológico
3.
J Neurosci ; 41(32): 6878-6891, 2021 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-34210782

RESUMO

Our current understanding of synergistic muscle control is based on the analysis of muscle activities. Modules (synergies) in muscle coordination are extracted from electromyographic (EMG) signal envelopes. Each envelope indirectly reflects the neural drive received by a muscle; therefore, it carries information on the overall activity of the innervating motor neurons. However, it is not known whether the output of spinal motor neurons, whose number is orders of magnitude greater than the muscles they innervate, is organized in a low-dimensional fashion when performing complex tasks. Here, we hypothesized that motor neuron activities exhibit a synergistic organization in complex tasks and therefore that the common input to motor neurons results in a large dimensionality reduction in motor neuron outputs. To test this hypothesis, we factorized the output spike trains of motor neurons innervating 14 intrinsic and extrinsic hand muscles and analyzed the dimensionality of control when healthy individuals exerted isometric forces using seven grip types. We identified four motor neuron synergies, accounting for >70% of the variance of the activity of 54.1 ± 12.9 motor neurons, and we identified four functionally similar muscle synergies. However, motor neuron synergies better discriminated individual finger forces than muscle synergies and were more consistent with the expected role of muscles actuating each finger. Moreover, in a few cases, motor neurons innervating the same muscle were active in separate synergies. Our findings suggest a highly divergent net neural inputs to spinal motor neurons from spinal and supraspinal structures, contributing to the dimensionality reduction captured by muscle synergies.SIGNIFICANCE STATEMENT We addressed whether the output of spinal motor neurons innervating multiple hand muscles could be accounted for by a modular organization, i.e., synergies, previously described to account for the coordination of multiple muscles. We found that motor neuron synergies presented similar dimensionality (implying a >10-fold reduction in dimensionality) and structure as muscle synergies. Nonetheless, the synergistic behavior of subsets of motor neurons within a muscle was also observed. These results advance our understanding of how neuromuscular control arises from mapping descending inputs to muscle activation signals. We provide, for the first time, insights into the organization of neural inputs to spinal motor neurons which, to date, has been inferred through analysis of muscle synergies.


Assuntos
Força da Mão/fisiologia , Mãos/inervação , Neurônios Motores/fisiologia , Músculo Esquelético/inervação , Músculo Esquelético/fisiologia , Adulto , Eletromiografia , Humanos , Masculino
4.
J Neural Eng ; 17(4): 046033, 2020 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-32674079

RESUMO

OBJECTIVE: We present a non-invasive framework for investigating efferent commands to 14 extrinsic and intrinsic hand muscles. We extend previous studies (limited to a few muscles) on common synaptic input among pools of motor neurons in a large number of muscles. APPROACH: Seven subjects performed sinusoidal isometric contractions to complete seven types of grasps, with each finger and with three combinations of fingers in opposition with the thumb. High-density surface EMG (HD-sEMG) signals (384 channels in total) recorded from the 14 muscles were decomposed into the constituent motor unit action potentials. This provided a non-invasive framework for the investigation of motor neuron discharge patterns, muscle coordination and efferent commands of the hand muscles during grasping. Moreover, during grasping tasks, it was possible to identify common neural information among pools of motor neurons innervating the investigated muscles. For this purpose, principal component analysis (PCA) was applied to the smoothed discharge rates of the decoded motor units. MAIN RESULTS: We found that the first principal component (PC1) of the ensemble of decoded motor neuron spike trains explained a variance of (53.0 ± 10.9) % and was positively correlated with force (R = 0.67 ± 0.10 across all subjects and tasks). By grouping the pools of motor neurons from extrinsic or intrinsic muscles, the PC1 explained a proportion of variance of (57.1 ± 11.3) % and (56.9 ± 11.8) %, respectively, and was correlated with force with R = 0.63 ± 0.13 and 0.63 ± 0.13, respectively. SIGNIFICANCE: These observations demonstrate a low dimensional control of motor neurons across multiple muscles that can be exploited for extracting control signals in neural interfacing. The proposed framework was designed for hand rehabilitation perspectives, such as post-stroke rehabilitation and hand-exoskeleton control.


Assuntos
Mãos , Neurônios Motores , Eletromiografia , Humanos , Contração Isométrica , Músculo Esquelético
5.
Annu Int Conf IEEE Eng Med Biol Soc ; 2019: 2307-2310, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31946361

RESUMO

We propose a framework based on high-density surface electromyography (HD-sEMG) to identify the neural drive to muscles controlling the human hand. High-density (320 channels) sEMG signals were recorded concurrently from intrinsic (the four dorsal interossei and thenar) and extrinsic (forearm) hand muscles and then decomposed into the constituent trains of motor unit (MU) action potentials. The participants performed pinch tasks with simultaneous activation of the thumb and one of the other fingers with sinusoidal force variations. The common drive among MUs across different muscles was extracted via principal component analysis (PCA) of the smoothed MU discharge rates. The first principal component of the smoothed discharge rates of all identified motor neurons explained 48.7 ± 15.4% of the total variance across all pinching tasks, indicating a common neural input shared by different muscles of the forearm and the hand.. When considering only the MUs extracted from extrinsic and intrinsic muscles, the percent of variance explained was 48.3 ± 15.3% and 57.1 ± 15.5%, respectively. This framework is conceived to use motor neuron activity for a proportional myoelectric control and rehabilitation technologies. A wearable adaptation of the framework is proposed for future perspectives.


Assuntos
Mãos , Neurônios Motores , Eletromiografia , Dedos , Humanos , Músculo Esquelético
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...