Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Technol ; : 1-18, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39010782

RESUMO

Flocculation is one of the most significant conditioning methods for sludge dewatering. In the study, a novel flocculant CS-TA, prepared through free radical-mediated conjugation of tannic acid (TA) and chitosan (CS), was proposed to improve sludge dewatering. The characterisation using Fourier transform infra-red spectroscopy and X-ray diffraction analysis shows that the CS chain was the backbone of CS-TA, and the presence of CS-TA aromatic rings confirmed the conjugation of CS with TA. Moreover, the conditioning of CS-TA yielded the best dewatering performance at 30 mg g TS-1 with the water content of sludge cake by press filtration (Wsc) of 59.78% ± 0.3% and capillary suction time (CST) of 11.8s ± 0.35 s, compared to 98.2% ± 0.15% and 56.2 s ± 0.16 in raw sludge. The results of different influencing factors (e.g. pH and temperature) on flocculation efficiency indicated that CS-TA possessed the capacity for enhancing sludge dewaterability over a wide range of pH, and the optimal temperature was observed to be 35 °C. Furthermore, the increase of particle size and zeta potential implied the addition of CS-TA favoured the formation of larger particles charge neutralisation and adsorption bridging effect. In addition, extracellular polymer substances (EPS) analysis indicated that the decrease in the polysaccharide and protein contents in EPS after CS-TA addition could increase the relative hydrophobicity of sludge. Moreover, the contents of heavy metals in sludge and their leaching toxicity and environmental risk were reduced. This study provides comprehensive insights into the exploration of CS-TA for sludge dewatering and the maintenance of ecological security in an eco-friendly.

2.
Environ Sci Pollut Res Int ; 28(13): 15909-15922, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33242199

RESUMO

In this study, the degradation performance of nutrients in zeolite trickling filter (ZTF) with different influent C/N ratios and aeration conditions was investigated. Microaeration was beneficial for enhancing NH4+-N removal performance. Due to the sufficient carbon source supply under a C/N ratio of 8, a high removal efficiency of NH4+-N and TN was simultaneously observed in ZTF. In addition, TN removal mainly occurred at the bottom, which might be explained by the sufficient nutrients available for bacteria to multiply in this zone. The abundant genera were Acinetobacter, Gemmobacter, Flavobacterium, and Pseudomonas, all of which are heterotrophic nitrification-aerobic denitrification (HNAD) bacteria. In addition, biofilm only slowed down the adsorption rate but did not significantly reduce the adsorption capacity of zeolite. Bio-zeolite had NH4+-N well adsorption capacity and bio-desorption capacity. Biological nitrogen removal performance was superior to physicochemical absorption of zeolite. The results suggested that the physicochemical of zeolite and biochemical reactions of microorganism coupling actions may be the main nitrogen transformation pathway in ZTF. Our research provides a reference for further understanding the nitrogen removal mechanism of zeolite bioreactors.


Assuntos
Nitrogênio , Zeolitas , Bactérias , Reatores Biológicos , Desnitrificação , Nitrificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...