Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 71
Filtrar
1.
Plant Cell Rep ; 43(6): 136, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38709311

RESUMO

KEY MESSAGE: In our study, we discovered a fragment duplication autoregulation mechanism in 'ZS-HY', which may be the reason for the phenotype of red foliage and red flesh in grapes. In grapes, MYBA1 and MYBA2 are the main genetic factors responsible for skin coloration which are located at the color loci on chromosome 2, but the exact genes responsible for color have not been identified in the flesh. We used a new teinturier grape germplasm 'ZhongShan-HongYu' (ZS-HY) which accumulate anthocyanin both in skin and flesh as experimental materials. All tissues of 'ZS-HY' contained cyanidin 3-O-(6″-p-coumaroyl glucoside), and pelargonidins were detected in skin, flesh, and tendril. Through gene expression analysis at different stage of flesh, significant differences in the expression levels of VvMYBA1 were found. Gene amplification analysis showed that the VvMYBA1 promoter is composed of two alleles, VvMYBA1a and 'VvMYBA1c-like'. An insertion of a 408 bp repetitive fragment was detected in the allele 'VvMYBA1c-like'. In this process, we found the 408 bp repetitive fragment was co-segregated with red flesh and foliage phenotype. Our results revealed that the 408 bp fragment replication insertion in promoter of 'VvMYBA1c-like' was the target of its protein, and the number of repeat fragments was related to the increase of trans-activation of VvMYBA1 protein. The activation of promoter by VvMYBA1 was enhanced by the addition of VvMYC1. In addition, VvMYBA1 interacted with VvMYC1 to promote the expression of VvGT1 and VvGST4 genes in 'ZS-HY'. The discovery of this mutation event provides new insights into the regulation of VvMYBA1 on anthocyanin accumulation in red-fleshed grape, which is of great significance for molecular breeding of red-fleshed table grapes.


Assuntos
Antocianinas , Regulação da Expressão Gênica de Plantas , Fenótipo , Proteínas de Plantas , Regiões Promotoras Genéticas , Fatores de Transcrição , Vitis , Vitis/genética , Vitis/metabolismo , Regiões Promotoras Genéticas/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Antocianinas/metabolismo , Antocianinas/genética , Pigmentação/genética , Frutas/genética , Frutas/metabolismo , Alelos
2.
J Agric Food Chem ; 72(8): 4433-4447, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38354220

RESUMO

Astringency influences the sensory characteristics and flavor quality of table grapes. We tested the astringency sensory attributes of berries and investigated the concentration of flavan-3-ols/proanthocyanidins (PAs) in skins after the application of the plant growth regulators CPPU and GA3 to the flowers and young berries of the "Summer Black" grape. Our results showed that CPPU and GA3 applications increase sensory astringency perception scores and flavan-3-ol/proanthocyanidin concentrations. Using integrated transcriptomic and proteomic analysis, differentially expressed transcripts and proteins associated with growth regulator treatment were identified, including those for flavonoid biosynthesis that contribute to the changes in sensory astringency levels. Transient overexpression of candidate astringency-related regulatory genes in grape leaves revealed that VvWRKY71, in combination with VvMYBPA1 and VvMYC1, could promote the biosynthesis of proanthocyanidins, while overexpression of VvNAC83 reduced the accumulation of proanthocyanidins. However, in transient promoter studies in Nicotiana benthamiana, VvWRKY71 repressed the promoter of VvMYBPA2, while VvNAC83 had no significant effect on the promoter activity of four PA-related genes, and VvMYBPA1 was shown to activate its own promoter. This study provides new insights into the molecular mechanisms of sensory astringency formation induced by plant growth regulators in grape berries.


Assuntos
Polietilenoglicóis , Poliuretanos , Proantocianidinas , Vitis , Proantocianidinas/metabolismo , Vitis/metabolismo , Frutas/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Adstringentes/metabolismo , Proteômica , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Perfilação da Expressão Gênica , Genes Reguladores , Regulação da Expressão Gênica de Plantas
3.
Mol Hortic ; 3(1): 9, 2023 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-37789478

RESUMO

Volatile terpenes are important compounds that influence fruit flavour and aroma of kiwifruit. Terpenes in plants also impact on the floral bouquet and defence against pests and pathogens in leaves and fruit. To better understand the overlapping roles that terpenes may fulfil in plants, a systematic gene, chemical and biochemical analysis of terpenes and terpene synthases (TPS) was undertaken in Red5 kiwifruit (Actinidia spp.). Analysis of the Red5 genome shows it contains only 22 TPS gene models, of which fifteen encode full-length TPS. Thirteen TPS can account for the major terpene volatiles produced in different tissues of Red5 kiwifruit and in response to different stimuli. The small Red5 TPS family displays surprisingly high functional redundancy with five TPS producing linalool/nerolidol. Treatment of leaves and fruit with methyl jasmonate enhanced expression of a subset of defence-related TPS genes and stimulated the release of terpenes. Six TPS genes were induced upon herbivory of leaves by the economically important insect pest Ctenopseustis obliquana (brown-headed leaf roller) and emission, but not accumulation, of (E)- and (Z)-nerolidol was strongly linked to herbivory. Our results provide a framework to understand the overlapping biological and ecological roles of terpenes in Actinidia and other horticultural crops.

4.
Int J Mol Sci ; 24(7)2023 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-37047480

RESUMO

Very long-chain fatty acid (VLCFA) synthesis in plants, is primarily rate-limited by the enzyme 3-ketoacyl CoA synthase (KCS), which also controls the rate and carbon chain length of VLCFA synthesis. Disruption of VLCFA during pollen development, may affect the pollen wall formation and ultimately lead to male sterility. Our study identified 24 grapevine KCS (VvKCS) genes and provided new names based on their relative chromosome distribution. Based on sequence alignment and phylogenetic investigation, these genes were grouped into seven subgroups, members of the same subgroup having similar motif structures. Synteny analysis of VvKCS genes, showed that the segmental duplication events played an important role in expanding this gene family. Expression profiles obtained from the transcriptome data showed different expression patterns of VvKCS genes in different tissues. Comparison of transcriptome and RT-qPCR data of the male sterile grape 'Y-14' and its fertile parent 'Shine Muscat', revealed that 10 VvKCS genes were significantly differentially expressed at the meiosis stage, which is a critical period of pollen wall formation. Further, joint analysis by weighted gene co-expression network analysis (WGCNA) and Kyoto Encyclopedia of Genes and Genomes (KEGG), revealed that five of these VvKCS (VvKCS6/15/19/20/24) genes were involved in the fatty acid elongation pathway, which may ultimately affect the structural integrity of the pollen wall in 'Y-14'. This systematic analysis provided a foundation for further functional characterization of VvKCS genes, with the aim of grapevine precision breeding improvement.


Assuntos
Genes de Plantas , Infertilidade Masculina , Masculino , Humanos , Filogenia , Melhoramento Vegetal , Perfilação da Expressão Gênica , Transcriptoma , Infertilidade Masculina/genética , Ácidos Graxos/genética , Regulação da Expressão Gênica de Plantas
6.
J Food Sci ; 88(1): 447-461, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36527319

RESUMO

Phenolic compounds and their derivatives play a major role in the intensity and characteristics of grape (Vitis vinifera) astringency. The present study investigated the relationship between phenolic composition and astringency of six commercial table grape varieties (two of each white-, red-, and black-skinned). Qualitative and quantitative liquid chromatography-mass spectrometry analysis was used to identify the variety-specific phenolic profiles in the skins and total astringency intensity was assessed and described by a trained sensory panel. Thirty phenolic compounds were identified among the six varieties. Principal component analysis of the phenolic profiles revealed that the intensity of astringency of grape skin was positively correlated with catechin, epicatechin, epicatechin-3-O-gallate, and proanthocyanidin dimers B1, B2, and B3. A further orthogonal partial least-squares discrimination analysis of these compounds showed that catechin was the substance most strongly and positively correlated (R = 0.904) with grape skin astringency. PRACTICAL APPLICATION: This study provided a better understanding of the relationships between phenolic composition and table grape astringency and highlighted a potential metabolic marker that could be used as a predictor for the complex astringency sensory attributes of table grape berries.


Assuntos
Catequina , Vitis , Vitis/química , Catequina/análise , Sementes/química , Adstringentes/análise , Frutas/química , Fenóis/análise , Cromatografia Líquida de Alta Pressão/métodos
7.
Plant Physiol Biochem ; 195: 1-13, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36584628

RESUMO

Anthocyanins are flavonoids that contribute to the color of grape berries and are an essential component of grape berry and wine quality. Anthocyanin accumulation in grape berries is dependent on the coordinated expression of genes encoding enzymes in the anthocyanin pathway that are principally regulated at the transcriptional level, with VvMYBA1 as the main transcriptional regulator in grapes. Alternative splicing (AS) events in VvMYBA1, however, have not been examined. In the present study, VvMYBA1-L, an AS variant of VvMYBA1, was identified in 'ZhongShan-Hong' (ZS-H) and its offspring. The AS variant is characterized by a deletion in the third exon of the open reading frame (ORF) of VvMYBA1-L, resulting in the early termination of the encoded protein. Overexpression of VvMYBA1-L in grape berries resulted in delayed flesh coloration and ectopic overexpression of VvMYBA1-L in tobacco inhibited the coloration of petals. Yeast two-hybrid and bimolecular fluorescence complementation (BiFC) assays revealed that VvMYBA1-L interacts with VvMYBA1. Dual luciferase assays indicated that co-infiltration of VvMYC1 and VvMYBA1 significantly activated the promoter regulated expression of VvCHS3, VvDFR, VvUFGT, and VvF3H. In the presence of VvMYBA1-L, however, the induction effect of VvMYBA1 on the indicated promoters was significantly inhibited. Our findings provide insight into the essential role of VvMYBA1 and its variant, VvMYBA1-L, in regulating anthocyanin accumulation in grape berry flesh.


Assuntos
Vitis , Vinho , Vitis/genética , Vitis/metabolismo , Antocianinas/metabolismo , Frutas/genética , Frutas/metabolismo , Processamento Alternativo/genética , Regulação da Expressão Gênica de Plantas
8.
Hortic Res ; 9: uhac200, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36382226

RESUMO

Fruit shape is an essential agronomic feature in many crops. We identified and functionally characterized an auxin pathway-related gene, VvSUN. VvSUN, which belongs to the SUN/IQ67-DOMAIN (IQD) family, localizes to the plasma membrane and chloroplast and may be involved in controlling fruit shape through auxin. It is highly expressed in the ovary, and the expression level 1 week before the anthesis stage is positively correlated with the fruit shape index. Functional analyses illustrated that VvSUN gene overexpression in tomato and tobacco plants changed fruit/pod shape. The VvSUN promoter directly bound to VvARF6 in yeast and activated ß-glucuronidase (GUS) activity by indole-3-acetic acid (IAA) treatments in grapevine leaves, indicating that VvSUN functions are in coordination with auxin. Further analysis of 35S::VvSUN transgenic tomato ovaries showed that the fruit shape changes caused by VvSUN were predominantly caused by variations in cell number in longitudinal directions by regulating endogenous auxin levels via polar transport and/or auxin signal transduction process variations. Moreover, enrichment of the 35S::VvSUN transgenic tomato differentially expressed genes was found in a variety of biological processes, including primary metabolic process, transmembrane transport, calcium ion binding, cytoskeletal protein binding, tubulin binding, and microtubule-based movement. Using weighted gene co-expression network analysis (WGCNA), we confirmed that this plant hormone signal transduction may play a crucial role in controlling fruit shape. As a consequence, it is possible that VvSUN acts as a hub gene, altering cellular auxin levels and the plant hormone signal transduction pathway, which plays a role in cell division patterns, leading to anisotropic growth of the ovary and, ultimately, an elongated fruit shape.

9.
Int J Mol Sci ; 23(14)2022 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-35887065

RESUMO

Anthocyanins are synthesized in the endoplasmic reticulum and then transported to the vacuole in plants. Glutathione S-transferases (GSTs) are thought to play a key role in anthocyanin transport. To clarify the mechanism of GST genes in the accumulation and transport of anthocyanin in the early fruit stage, we analyzed and characterized the GST family in the flesh of 'Zhongshan-HongYu' (ZS-HY) based on the transcriptome. In this study, the 92 GST genes identified through a comprehensive bioinformatics analysis were unevenly present in all chromosomes of grapes, except chromosomes 3, 9 and 10. Through the analysis of the chromosomal location, gene structure, conserved domains, phylogenetic relationships and cis-acting elements of GST family genes, the phylogenetic tree divided the GST genes into 9 subfamilies. Eighteen GST genes were screened and identified from grape berries via a transcriptome sequencing analysis, of which 4 belonged to the phi subfamily and 14 to the tau subfamily, and the expression levels of these GST genes were not tissue-specific. The phylogenetic analysis indicated that VvGST4 was closely related to PhAN9 and AtTT19. This study provides a foundation for the analysis of the GST gene family and insight into the roles of GSTs in grape anthocyanin transport.


Assuntos
Antocianinas , Vitis , Antocianinas/metabolismo , Regulação da Expressão Gênica de Plantas , Glutationa Transferase/metabolismo , Filogenia , Proteínas de Plantas/metabolismo , Vitis/genética , Vitis/metabolismo
10.
Infect Drug Resist ; 15: 2301-2314, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35517901

RESUMO

Objective: The prevalence and clinical impact on mortality of carbapenem-resistant Pseudomonas aeruginosa (CRPA) infection are unclear in elderly patients. Here, we aimed to clarify the prevalence, the clinical manifestations, antimicrobial resistance, risk factors and outcomes of elderly inpatients with CRPA infection. Methods: A retrospective study of 600 elderly inpatients infected with P. aeruginosa was conducted at Yueyang Hospital of Integrated Traditional Chinese and Western Medicine from January 1st 2018 to December 31st 2020. All 155 patients with CRPA infection were designated as a case group. Patients with carbapenem-susceptible Pseudomonas aeruginosa (CSPA) were randomly selected from remaining 445 cases in a 1:1 ratio to case group as a control group. Results: Of 600 P. aeruginosa isolates, the overall rates of CRPA, MDR PA (multidrug-resistance Pseudomonas aeruginosa) were 25.8% (155), 22.3% (134), respectively. The rankings of the top five resistant rates of CRPA to tested antimicrobial drugs were imipenem (87.7%), meropenem (70.3%), ciprofloxacin (51.0%), levofloxacin (48.4%), cefoperazone (43.2%). Independent risk factors for patients with CRPA infection were cerebrovascular disease (OR = 3.517, P < 0.001), foley catheter (OR = 2.073, P = 0.018), length of hospital stay ≥ 14 days (OR = 1.980, P = 0.013), albumin < 35 g/L (OR = 2.049, P = 0.020), previous antibiotic exposure to carbapenems (OR = 7.022, P = 0.004), previous antibiotic exposure to third- or fourth-generation cephalosporins (OR = 12.649, P = 0.002). Of 155 patients with CRPA infection, the mortality rate was 16.8% (26/155). Independent risk factors for mortality were receiving mechanical ventilation (OR = 3.671, P = 0.007) and neutrophil percentage ≥ 80% (OR = 2.908, P = 0.024). Conclusion: The study revealed high rates of CRPA, MDR PA among the hospitalized elderly patient with P. aeruginosa infection. The analysis of antimicrobial susceptibility emphasizes the necessity for antimicrobial stewardship and infection control in hospitals. These findings of risk factors are practical significant to identify patients at high risk for CRPA infection and mortality that may benefit from alternate empiric treatment.

11.
Front Public Health ; 10: 765624, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35309213

RESUMO

The carbapenem-resistant hypervirulent Klebsiella pneumoniae (CR-hvKP) poses a severe therapeutic challenge to global public health, and research on CR-hvKP in older patients remain limited. In this study, we aimed to investigate the clinical and molecular characteristics and risk factors of CR-hvKP infections in older patients. We retrospectively investigated older patients with carbapenem-resistant Klebsiella pneumoniae (CRKP) infections in the intensive care unit (ICU) between January 2020 and December 2020. The clinical data, and microbiological data including antimicrobial susceptibility testing, phenotype experiment and detection of carbapenemases, string test, virulence genes, capsular serotype-specific (cps) genes, and multilocus sequence typing, of the CR-hvKP group defined by the presence of any one of the virulence genes, including rmpA, rmpA2, iucA, iroN, and peg-344 were compared with those of CR-non-hvKP strains. Of the 80 CRKP strains, 51 (63.8%) met the definition of CR-hvKP. The main mechanism of resistance to carbapenems was the presence of the blaKPC-2 gene. Sequence type (ST)11 (81.3%, 65/80) and ST15 (16.3%, 13/80) were the most common STs in CRKP strains. The minimum inhibitory concentration (MIC)50 values of the CR-hvKP group against the six tested antibiotics (ceftazidime, ceftazidime-avibactam, imipenem-avibactam, tigecycline, levofloxacin, and Cefoperazone-Sulbactam) exhibited elevated levels than the CR-non-hvKP group. Ceftazidime and imipenem by combining avibactam (4 µg/mL) significantly decreased the MIC90 values more than 16-fold than ceftazidime and imipenem alone against Klebsiella pneumoniae carbapenemase (KPC)-2-producing K. pneumoniae. Cardiovascular disease [odds ratio (OR) = 11.956] and ST11-K64 (OR = 8.385) appeared to be independent variables associated with CR-hvKP infection by multivariate analysis. In conclusion, higher MICs of the last line antibiotic agents (ceftazidime-avibactam, tigecycline) might be a critical consideration in the clinical management of older patients where the concentration of these toxic antibiotics matters because of underlying comorbidities. Caution regarding KPC-2-producing ST11-K64 CR-hvKP as being new significant "superbugs" is required as they are widespread, and infection control measures should be strengthened to curb further dissemination in nosocomial settings in China.


Assuntos
Infecções por Klebsiella , Klebsiella pneumoniae , Idoso , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Carbapenêmicos/farmacologia , Ceftazidima , Humanos , Imipenem , Infecções por Klebsiella/tratamento farmacológico , Infecções por Klebsiella/epidemiologia , Infecções por Klebsiella/microbiologia , Klebsiella pneumoniae/genética , Estudos Retrospectivos , Tigeciclina
12.
Front Genet ; 12: 615911, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33763110

RESUMO

Mangrove forest ecosystems, which provide important ecological services for marine environments and human activities, are being destroyed worldwide at an alarming rate. The objective of our study was to use molecular data and analytical techniques to separate the effects of historical and contemporary processes on the distribution of mangroves and patterns of population genetic differentiation. Seven mangrove species (Acanthus ilicifolius, Aegiceras corniculatum, Avicennia marina, Bruguiera gymnorrhiza, Kandelia obovata, Lumnitzera racemosa, and Rhizophora stylosa), which are predominant along the coastlines of South China, were genotyped at nuclear (nSSR) and chloroplast (cpSSR) microsatellite markers. We estimated historical and contemporary gene flow, the genetic diversity and population structure of seven mangrove species in China. All of these seven species exhibited few haplotypes, low levels of genetic diversity (H E = 0.160-0.361, with the exception of K. obovata) and high levels of inbreeding (F IS = 0.104-0.637), which may be due to their marginal geographical distribution, human-driven and natural stressors on habitat loss and fragmentation. The distribution patterns of haplotypes and population genetic structures of seven mangrove species in China suggest historical connectivity between populations over a large geographic area. In contrast, significant genetic differentiation [F ST = 0.165-0.629 (nSSR); G ST = 0.173-0.923 (cpSSR)] indicates that populations of mangroves are isolated from one another with low levels of contemporary gene flow among populations. Our results suggest that populations of mangroves were historically more widely inter-connected and have recently been isolated, likely through a combination of ocean currents and human activities. In addition, genetic admixture in Beibu Gulf populations and populations surrounding Hainan Island and southern mainland China were attributed to asymmetric gene flow along prevailing oceanic currents in China in historical times. Even ocean currents promote genetic exchanges among mangrove populations, which are still unable to offset the effects of natural and anthropogenic fragmentation. The recent isolation and lack of gene flow among populations of mangroves may affect their long-term survival along the coastlines of South China. Our study enhances the understanding of oceanic currents contributing to population connectivity, and the effects of anthropogenic and natural habitat fragmentation on mangroves, thereby informing future conservation efforts and seascape genetics toward mangroves.

13.
J Agric Food Chem ; 69(4): 1413-1429, 2021 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-33481572

RESUMO

Terpenes and their derivatives are important biomarkers of grape quality as they contribute to the flavor and aroma of grapes. However, the molecular basis of terpene biosynthesis throughout the grapevine phenological developmental cycle remains elusive. Our current study investigates the free and bound terpene biosynthesis of berries at different phenological stages from preveraison to harvest. Detailed gene expression (transcriptomics) analysis, terpenoid volatile production by gas chromatography-mass spectrometry (GC-MS), and in planta transient expression were employed. Our results show that concentrations of most individual terpenes at different stages are distinctive and increase from preveraison to the veraison stage followed by a decrease from veraison to maturity. The combined transcriptomic analysis and terpene profiling revealed that 22 genes belonging to the MEP pathway and multiple classes of transcription factor family members including bHLH and several hormone biosynthesis- or signaling-related genes likely participate in the regulation of terpenoid biosynthesis according to their specific expression patterns in berries. Quantitative real-time polymerase chain expression analysis of 8 key differentially expressed genes in MEP pathways and further 12 randomly selected genes was performed during 8 sampling stages and validated the RNA-seq-derived expression profiles. To further confirm the function of a subset of the differentially expressed genes, we investigated the effects of combined overexpression of 1-deoxy-d-xylulose-5-phosphate synthase (VvDXS1-LOC100249323), 1-deoxy-d-xylulose-5-phosphate reductoisomerase (VvDXR-LOC100248516), and terpene synthase (VvTPS56-LOC100266449) on the production of terpenes by transient overexpression in Nicotiana benthamiana leaves. The overall developmental patterns of total terpenes and gene expression profiles will help guide the functional analyses of further candidate genes important for terpene biosynthesis of grape as well as identifying the master transcriptional and hormonal regulators of this pathway in the future.


Assuntos
Alquil e Aril Transferases/metabolismo , Eritritol/análogos & derivados , Aromatizantes/metabolismo , Frutas/química , Frutas/crescimento & desenvolvimento , Proteínas de Plantas/metabolismo , Fosfatos Açúcares/metabolismo , Terpenos/metabolismo , Vitis/genética , Alquil e Aril Transferases/genética , Eritritol/metabolismo , Aromatizantes/química , Frutas/genética , Frutas/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Terpenos/química , Vitis/química , Vitis/crescimento & desenvolvimento , Vitis/metabolismo
14.
Int J Mol Sci ; 21(12)2020 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-32570751

RESUMO

The glycogen synthase kinase 3/shaggy kinase (GSK3) is a serine/threonine kinase that plays important roles in brassinosteroid signaling, abiotic stress responses, cell division, and elongation, etc. In this study, we characterized seven grape GSK3 genes, showing high similarities with homologs from other species including Arabidopsis, white pear, apple, orange, and peach. Gene chip microarray data derived from an online database revealed very diverse developmental and tissue-specific expression patterns of VvSKs. VvSK3 and VvSK7 showed much higher expression levels in almost every tissue compared with other members. VvSK7 was highly enriched in young tissues like berries before the veraison stage, young leaves and green stems, etc., but immediately downregulated after these tissues entered maturation or senescence phases. Prediction of cis-elements in VvSK promoters indicated that VvSKs might be sensitive to light stimulation, which is further confirmed by the qPCR data. Constitutive overexpression of VvSK7 in Arabidopsis leads to dwarf plants that resembles BR-deficient mutants. The photosynthetic rate was significantly reduced in these plants, even though they accumulated more chlorophyll in leaves. Transient overexpression of VvSKs in tomatoes delayed the fruit ripening process, consistent with the observation in grapevine which blocks VvSKs by EBR- or BIKININ-promoted berry expansion and soluble solids accumulation. Data presented in the current study may serve as a theoretical basis for the future application of BRs or related compounds in quality grape production.


Assuntos
Quinase 3 da Glicogênio Sintase/genética , Proteínas de Plantas/genética , Vitis/fisiologia , Clorofila/metabolismo , Evolução Molecular , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Quinase 3 da Glicogênio Sintase/metabolismo , Especificidade de Órgãos , Fotossíntese , Filogenia , Proteínas de Plantas/metabolismo , Regiões Promotoras Genéticas , Vitis/genética
15.
Molecules ; 25(11)2020 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-32498235

RESUMO

Volatile compounds are considered to be essential for the flavor and aroma quality of grapes. Thidiazuron (TDZ) is a commonly used growth regulator in grape cultivation that stimulates larger berries and prevents fruit drop. This study was conducted to investigate the effect of TDZ on the production of aroma volatiles and to identify the key genes involved in the terpene biosynthesis pathways that are affected by this compound. Treatment with TDZ had a negative effect on the concentration of volatile compounds, especially on monoterpenes, which likely impacts the sensory characteristics of the fruit. The expression analysis of genes related to the monoterpenoid biosynthesis pathways confirmed that treatment with TDZ negatively regulated the key genes DXS1, DXS3, DXR, HDR, VvPNGer and VvPNlinNer1. Specifically, the expression levels of the aforementioned genes were down-regulated in almost all berry development stages in the TDZ-treated samples. The novel results from the present study can be used to aid in the development of food products which maintain the flavor quality and sensory characteristics of grape. Furthermore, these findings can provide the theoretical basis that can help to optimize the utilization of TDZ for the field production of grapes at a commercial scale.


Assuntos
Monoterpenos/metabolismo , Compostos de Fenilureia/farmacologia , Proteínas de Plantas/genética , Tiadiazóis/farmacologia , Vitis/crescimento & desenvolvimento , Regulação para Baixo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Odorantes/análise , Vitis/química , Vitis/genética , Compostos Orgânicos Voláteis/metabolismo
16.
3 Biotech ; 10(5): 229, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32399379

RESUMO

In the present study, we identified changes in protein expression patterns of grapevine buds when treated with hydrogen cyanamide (HC). HC induced a shift of more than 2-folds in the expression of 1250 proteins out of approximately 7000 detected proteins. The majority of the differentially expressed proteins (DEPs) were localized in the chloroplast (419) and cytoplasm (347). Most of the detected DEPs were linked with energy metabolism, redox activity, hormone, and stress signaling. Particularly, the DEPs associated with defense and sugar metabolism showed significantly higher expression in HC-treated buds. Kyoto encyclopedia of genes and genomes (KEGG) analysis revealed significant enrichment for circadian rhythm, ribosome, and metabolic pathways. Moreover, the antioxidant activity of peroxidase (POD) increased at initial stages but declined at later stages (18 days post-treatment). This study identified several dormancy-related proteins that regulated signaling, as well as metabolic pathways upon HC application. The outcome of this study provides insights into the role of HC in dormancy release for grapevine production, hence useful to alleviate yield losses in mild winter regions.

17.
Int J Mol Sci ; 20(14)2019 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-31323865

RESUMO

Hydrogen cyanamide (HC) is an agrochemical compound that is frequently used to break bud dormancy in grapevines grown under mild winter conditions globally. The present study was carried out to provide an in-depth understanding of the molecular mechanism associated with HC releasing bud dormancy in grapevines. For this purpose, RNA-seq based transcriptomic and tandem mass tag (TMT)-based proteomic information was acquired and critically analyzed. The combined results of transcriptomic and proteomic analysis were utilized to demonstrate differential expression pattern of genes at the translational and transcriptional levels. The outcome of the proteomic analysis revealed that a total of 7135 proteins (p-value ≤ 0.05; fold change ≥ 1.5) between the treatments (HC treated versus control) were identified, out of which 6224 were quantified. Among these differentially expressed proteins (DEPs), the majority of these proteins were related to heat shock, oxidoreductase activity, and energy metabolism. Metabolic, ribosomal, and hormonal signaling pathways were found to be significantly enriched at both the transcriptional and translational levels. It was illustrated that genes associated with metabolic and oxidoreductase activity were mainly involved in the regulation of bud dormancy at the transcriptomic and proteomic levels. The current work furnishes a new track to decipher the molecular mechanism of bud dormancy after HC treatment in grapes. Functional characterization of key genes and proteins will be informative in exactly pinpointing the crosstalk between transcription and translation in the release of bud dormancy after HC application.


Assuntos
Flores/metabolismo , Vitis/metabolismo , Flores/genética , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Dormência de Plantas/genética , Dormência de Plantas/fisiologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteômica/métodos , Transcriptoma/genética , Vitis/genética
18.
Proc Natl Acad Sci U S A ; 115(50): E11578-E11585, 2018 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-30463943

RESUMO

The Kohn-Sham potential [Formula: see text] is the effective multiplicative operator in a noninteracting Schrödinger equation that reproduces the ground-state density of a real (interacting) system. The sizes and shapes of atoms, molecules, and solids can be defined in terms of Kohn-Sham potentials in a nonarbitrary way that accords with chemical intuition and can be implemented efficiently, permitting a natural pictorial representation for chemistry and condensed-matter physics. Let [Formula: see text] be the maximum occupied orbital energy of the noninteracting electrons. Then the equation [Formula: see text] defines the surface at which classical electrons with energy [Formula: see text] would be turned back and thus determines the surface of any electronic object. Atomic and ionic radii defined in this manner agree well with empirical estimates, show regular chemical trends, and allow one to identify the type of chemical bonding between two given atoms by comparing the actual internuclear distance to the sum of atomic radii. The molecular surfaces can be fused (for a covalent bond), seamed (ionic bond), necked (hydrogen bond), or divided (van der Waals bond). This contribution extends the pioneering work of Z.-Z. Yang et al. [Yang ZZ, Davidson ER (1997) Int J Quantum Chem 62:47-53; Zhao DX, et al. (2018) Mol Phys 116:969-977] by our consideration of the Kohn-Sham potential, protomolecules, doubly negative atomic ions, a bond-type parameter, seamed and necked molecular surfaces, and a more extensive table of atomic and ionic radii that are fully consistent with expected periodic trends.

19.
J Chem Phys ; 148(7): 074110, 2018 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-29471641

RESUMO

Nanostructures can be bound together at equilibrium by the van der Waals (vdW) effect, a small but ubiquitous many-body attraction that presents challenges to density functional theory. How does the binding energy depend upon the size or number of atoms in one of a pair of identical nanostructures? To answer this question, we treat each nanostructure as a whole object, not as a collection of atoms. Our calculations start from an accurate static dipole polarizability for each considered nanostructure, and an accurate equilibrium center-to-center distance for the pair (the latter from experiment or from the vdW-DF-cx functional). We consider the competition in each term -C2k/d2k (k = 3, 4, 5) of the long-range vdW series for the interaction energy, between the size dependence of the vdW coefficient C2k and that of the 2kth power of the center-to-center distance d. The damping of these vdW terms can be negligible, but in any case, it does not affect the size dependence for a given term in the absence of non-vdW binding. To our surprise, the vdW energy can be size-independent for quasi-spherical nanoclusters bound to one another by vdW interaction, even with strong nonadditivity of the vdW coefficient, as demonstrated for fullerenes. We also show that, for low-dimensional systems, the vdW interaction yields the strongest size-dependence, in stark contrast to that of fullerenes. We illustrate this with parallel planar polycyclic aromatic hydrocarbons. The size dependences of other morphologies or bonding types lie between, as shown by sodium clusters.

20.
Phys Chem Chem Phys ; 19(32): 21707-21713, 2017 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-28776618

RESUMO

Recently, Tao and Mo proposed a meta-generalized gradient approximation for the exchange-correlation energy with remarkable accuracy for molecules, solids, and surfaces. To better understand this functional, in this work, we make a comparative study of the TM and TMTPSS functionals, the latter of which is a combination of the TM exchange with the original TPSS correlation functional, on atoms, molecules, and hydrogen-bonded complexes by the use of eight well-known databases. Our calculations show that, while the TMTPSS functional achieves better accuracy for atomization energies or enthalpies of formation, harmonic vibrational frequencies, and atomic excitation energies than the TM functional, it is less accurate for proton affinities, molecular bond lengths, and in particular hydrogen-bonded complexes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...