Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
FASEB J ; 38(9): e23643, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38703030

RESUMO

Secreted phospholipase A2s are involved in the development of obesity, type 2 diabetes mellitus (T2DM) and cardiovascular disease, which have become serious and growing health concerns worldwide. Integration of genome-wide association study and gene co-expression networks analysis showed that the secreted phospholipase A2 group XIIA (PLA2G12A) may participate in hepatic lipids metabolism. Nevertheless, the role of PLA2G12A in lipid metabolism and its potential mechanism remain elusive. Here, we used AAV9 vector carrying human PLA2G12A gene to exogenously express hPLA2G12A in the liver of mice. We demonstrated that the overexpression of hPLA2G12A resulted in a significant decrease in serum lipid levels in wild-type mice fed with chow diet or high-fat diet (HFD). Moreover, hPLA2G12A treatment protected against diet-induced obesity and insulin resistance in mice fed a HFD. Notably, we found that hPLA2G12A treatment confers protection against obesity and hyperlipidemia independent of its enzymatic activity, but rather by increasing physical activity and energy expenditure. Furthermore, we demonstrated that hPLA2G12A treatment induced upregulation of ApoC2 and Cd36 and downregulation of Angptl8, which contributed to the increase in clearance of circulating triglycerides and hepatic uptake of fatty acids without affecting hepatic de novo lipogenesis, very low-density lipoprotein secretion, or intestinal lipid absorption. Our study highlights the potential of PLA2G12A gene therapy as a promising approach for treating obesity, insulin resistance and T2DM.


Assuntos
Dieta Hiperlipídica , Metabolismo Energético , Resistência à Insulina , Camundongos Endogâmicos C57BL , Obesidade , Triglicerídeos , Animais , Obesidade/metabolismo , Obesidade/etiologia , Camundongos , Triglicerídeos/metabolismo , Triglicerídeos/sangue , Masculino , Dieta Hiperlipídica/efeitos adversos , Humanos , Fígado/metabolismo , Metabolismo dos Lipídeos
2.
Diabetes Metab J ; 2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-38310881

RESUMO

Background: Insulin resistance (IR) is the key pathological basis of many metabolic disorders. Lack of asialoglycoprotein receptor 1 (ASGR1) decreased the serum lipid levels and reduced the risk of coronary artery disease. However, whether ASGR1 also participates in the regulatory network of insulin sensitivity and glucose metabolism remains unknown. Methods: The constructed ASGR1 knockout mice and ASGR1-/- HepG2 cell lines were used to establish the animal model of metabolic syndrome and the IR cell model by high-fat diet (HFD) or drug induction, respectively. Then we evaluated the glucose metabolism and insulin signaling in vivo and in vitro. Results: ASGR1 deficiency ameliorated systemic IR in mice fed with HFD, evidenced by improved insulin intolerance, serum insulin, and homeostasis model assessment of IR index, mainly contributed from increased insulin signaling in the liver, but not in muscle or adipose tissues. Meanwhile, the insulin signal transduction was significantly enhanced in ASGR1-/- HepG2 cells. By transcriptome analyses and comparison, those differentially expressed genes between ASGR1 null and wild type were enriched in the insulin signal pathway, particularly in phosphoinositide 3-kinase-AKT signaling. Notably, ASGR1 deficiency significantly reduced hepatic gluconeogenesis and glycogenolysis. Conclusion: The ASGR1 deficiency was consequentially linked with improved hepatic insulin sensitivity under metabolic stress, hepatic IR was the core factor of systemic IR, and overcoming hepatic IR significantly relieved the systemic IR. It suggests that ASGR1 is a potential intervention target for improving systemic IR in metabolic disorders.

3.
Biochem Biophys Res Commun ; 639: 20-28, 2023 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-36463757

RESUMO

Serum amyloid A (SAA) is an acute response protein that mainly produced by hepatocytes, and it can promote endothelial dysfunction via a pro-inflammatory and pro-thrombotic effect in atherosclerosis and renal disease. Overdose of Acetaminophen (APAP) will cause hepatotoxicity accompany with hepatocyte necrosis, liver sinusoidal endothelial cells (LSECs) damage and thrombosis in liver. However, whether SAA plays a role in APAP-induced liver toxicity remains unclear. Here, we evaluated the Saa1/2 expression in APAP-induced liver injury, and found that Saa1/2 production was significantly increased in an autocrine manner in APAP injury model. Moreover, we used neutralizing antibody (anti-SAA) to block the function of serum Saa1/2. We found that neutralizing serum Saa1/2 protected against APAP-induced liver injuries and increased the survival rate of mice that were treated with lethal dose APAP. Further investigations showed that blocking Saa1/2 reduced APAP-induced sinusoidal endothelium damage, hemorrhage and thrombosis. In addition, in vitro experiments showed that Saa1/2 augmented the toxic effect of APAP on LSECs, and Saa1/2 promoted platelets aggregation on LSECs cell membrane. Taken together, this study suggests that Saa1/2 may play a critical role in APAP-induced liver damages through platelets aggregation and sinusoidal damage. Therefore, we conceptually demonstrate that inhibition of SAA may be a potential intervention for APAP-directed acute liver injuries.


Assuntos
Doença Hepática Crônica Induzida por Substâncias e Drogas , Doença Hepática Induzida por Substâncias e Drogas , Camundongos , Animais , Acetaminofen/toxicidade , Proteína Amiloide A Sérica/metabolismo , Agregação Plaquetária , Doença Hepática Crônica Induzida por Substâncias e Drogas/metabolismo , Células Endoteliais , Fígado/metabolismo , Hepatócitos/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/prevenção & controle , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Camundongos Endogâmicos C57BL
4.
iScience ; 25(11): 105359, 2022 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-36325073

RESUMO

Recently, single-cell RNA sequencing (scRNA-seq) and single-cell assay for transposase-accessible chromatin using sequencing (scATAC-seq) have been developed to separately measure transcriptomes and chromatin accessibility profiles at the single-cell resolution. However, few methods can reliably integrate these data to perform regulatory network analysis. Here, we developed integrated regulatory network analysis (IReNA) for network inference through the integrated analysis of scRNA-seq and scATAC-seq data, network modularization, transcription factor enrichment, and construction of simplified intermodular regulatory networks. Using public datasets, we showed that integrated network analysis of scRNA-seq data with scATAC-seq data is more precise to identify known regulators than scRNA-seq data analysis alone. Moreover, IReNA outperformed currently available methods in identifying known regulators. IReNA facilitates the systems-level understanding of biological regulatory mechanisms and is available at https://github.com/jiang-junyao/IReNA.

5.
Curr Issues Mol Biol ; 44(2): 470-482, 2022 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-35723318

RESUMO

Liver regeneration is a complicated biological process orchestrated by various liver resident cells. Hepatic cell proliferation and reconstruction of the hepatic architecture involve multiple signaling pathways. It has been reported that the Hh signal is involved in liver regeneration. However, the signal transduction pathways and cell types involved are ill studied. This study aimed to investigate hedgehog signal response cell types and the specific molecular mechanism involved in the process of liver regeneration. Partial hepatectomy (PH) of 70% was performed on ICR (Institute of Cancer Research) mice to study the process of liver regeneration. We found that the hedgehog signal was activated significantly after PH, including hedgehog ligands, receptors and intracellular signaling molecules. Ligand signals were mainly expressed in bile duct cells and non-parenchymal hepatic cells, while receptors were expressed in hepatocytes and some non-parenchymal cells. Inhibition of the hedgehog signal treated with vismodegib reduced the liver regeneration rate after partial hepatectomy, including inhibition of hepatic cell proliferation by decreasing Cyclin D expression and disturbing the cell cycle through the accumulation of Cyclin B. The current study reveals the important role of the hedgehog signal and its participation in the regulation of hepatic cell proliferation and the cell cycle during liver regeneration. It provides new insight into the recovery of the liver after liver resection.

6.
JCI Insight ; 6(19)2021 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-34622799

RESUMO

A population genetic study identified that the asialoglycoprotein receptor 1 (ASGR1) mutation carriers had substantially lower non-HDL-cholesterol (non-HDL-c) levels and reduced risks of cardiovascular diseases. However, the mechanism behind this phenomenon remained unclear. Here, we established Asgr1-knockout mice that represented a plasma lipid profile with significantly lower non-HDL-c and triglyceride (TG) caused by decreased secretion and increased uptake of VLDL/LDL. These 2 phenotypes were linked with the decreased expression of microsomal triglyceride transfer protein and proprotein convertase subtilisin/kexin type 9, 2 key targeted genes of sterol regulatory element-binding proteins (SREBPs). Furthermore, there were fewer nuclear SREBPs (nSREBPs) on account of more SREBPs being trapped in endoplasmic reticulum, which was caused by an increased expression of insulin-induced gene 1 (INSIG1), an anchor of SREBPs. Overexpression and gene knockdown interventions, in different models, were conducted to rescue the ASGR1-deficient phenotypes, and we found that INSIG1 knockdown independently reversed the ASGR1-mutated phenotypes with increased serum total cholesterol, LDL-c, TG, and liver cholesterol content accompanied by restored SREBP signaling. ASGR1 rescue experiments reduced INSIG1 and restored the SREBP network defect as manifested by improved apolipoprotein B secretion and reduced LDL uptake. Our observation demonstrated that increased INSIG1 is a critical factor responsible for ASGR1 deficiency-associated lipid profile changes and nSREBP suppression. This finding of an ASGR1/INSIG1/SREBP axis regulating lipid hemostasis may provide multiple potential targets for lipid-lowering drug development.


Assuntos
Receptor de Asialoglicoproteína/genética , Metabolismo dos Lipídeos/genética , Proteínas de Membrana/metabolismo , Proteínas de Ligação a Elemento Regulador de Esterol/metabolismo , Animais , Proteínas de Transporte/metabolismo , Núcleo Celular/metabolismo , HDL-Colesterol/metabolismo , LDL-Colesterol/metabolismo , VLDL-Colesterol/metabolismo , Retículo Endoplasmático/metabolismo , Homeostase , Camundongos , Camundongos Knockout , Pró-Proteína Convertase 9/metabolismo , Transdução de Sinais , Triglicerídeos/metabolismo
7.
iScience ; 24(5): 102483, 2021 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-34113824

RESUMO

Hepatic stellate cells (HSCs) are crucial for liver injury repair and cirrhosis. However, the mechanism of chemotactic recruitment of HSCs into injury loci is still largely unknown. Here, we demonstrate that serum amyloid A1 (SAA1) acts as a chemokine recruiting HSCs toward injury loci signaling via TLR2, a finding proven by gene manipulation studies in cell and mice models. The mechanistic investigations revealed that SAA1/TLR2 axis stimulates the Rac GTPases through PI3K-dependent pathways and induces phosphorylation of MLC (pSer19). Genetic deletion of TLR2 and pharmacological inhibition of PI3K diminished the phosphorylation of MLCpSer19 and migration of HSCs. In brief, SAA1 serves as a hepatic endogenous chemokine for the TLR2 receptor on HSCs, thereby initiating PI3K-dependent signaling and its effector, Rac GTPases, which consequently regulates actin filament remodeling and cell directional migration. Our findings provide novel targets for anti-fibrosis drug development.

8.
Stem Cell Res Ther ; 12(1): 151, 2021 02 25.
Artigo em Inglês | MEDLINE | ID: mdl-33632328

RESUMO

BACKGROUND: Chemically strategies to generate hepatic cells from human pluripotent stem cells (hPSCs) for the potential clinical application have been improved. However, producing high quality and large quantities of hepatic cells remain challenging, especially in terms of step-wise efficacy and cost-effective production requires more improvements. METHODS: Here, we systematically evaluated chemical compounds for hepatoblast (HB) expansion and maturation to establish a robust, cost-effective, and reproducible methodology for self-renewal HBs and functional hepatocyte-like cell (HLC) production. RESULTS: The established chemical cocktail could enable HBs to proliferate nearly 3000 folds within 3 weeks with preserved bipotency. Moreover, those expanded HBs could be further efficiently differentiated into homogenous HLCs which displayed typical morphologic features and functionality as mature hepatocytes including hepatocyte identity marker expression and key functional activities such as cytochrome P450 metabolism activities and urea secretion. Importantly, the transplanted HBs in the injured liver of immune-defect mice differentiated as hepatocytes, engraft, and repopulate in the injured loci of the recipient liver. CONCLUSION: Together, this chemical compound-based HLC generation method presents an efficient and cost-effective platform for the large-scale production of functional human hepatic cells for cell-based therapy and drug discovery application.


Assuntos
Hepatócitos , Células-Tronco Pluripotentes , Animais , Diferenciação Celular , Terapia Baseada em Transplante de Células e Tecidos , Humanos , Fígado , Camundongos
9.
Life Sci ; 268: 119000, 2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33417961

RESUMO

AIM: This study aimed to reveal the effects of icaritin (ICT) on lipotoxicity induced by palmitate (PA) in hepatic cells and steatosis in high-fat diet (HFD)-fed mice as well as exploring the potential mechanisms. MAIN METHODS: Primary mouse hepatocytes and human hepatoma Huh7 cells were used to evaluate ICT effect in vitro. HFD-fed mice were used to evaluate the ICT effect in vivo. RESULTS: In vitro study indicated that ICT significantly rescued PA-induced steatosis, mainly through a combination of robust increased mitochondrial respiration, fatty acid oxidation and mildly decreased synthesis of fatty acid. An HFD-fed mouse model with 8 weeks HFD-fed showed metabolic disorders, while ICT application significantly reduced the weight, serum glucose levels, insulin resistance, hepatic steatosis level and adipose contents. In consistent with the observations in cell lines, ICT rescued the HFD-impaired functions and contents of key factors related to fatty acid ß-oxidation through elevated expression of peroxisome proliferator-activated receptor α (PPARα). Meanwhile, it also reversed the decreased phosphoryl levels of AKT and glucogen synthase kinase 3 (GSK3ß), leading to the improvement of insulin resistance. SIGNIFICANCE: ICT administration had a therapeutic effect on PA- or HFD-induced hepatic steatosis and metabolic disorders. It may provide a novel strategy to construct preventive and therapeutic means for hepatic steatosis.


Assuntos
Ácidos Graxos/metabolismo , Flavonoides/farmacologia , Hepatócitos/efeitos dos fármacos , Resistência à Insulina , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Trifosfato de Adenosina/metabolismo , Animais , Dieta Hiperlipídica/efeitos adversos , Glicogênio Sintase Quinase 3 beta/genética , Glicogênio Sintase Quinase 3 beta/metabolismo , Hepatócitos/metabolismo , Hepatócitos/patologia , Humanos , Masculino , Camundongos Endogâmicos C57BL , Hepatopatia Gordurosa não Alcoólica/etiologia , Hepatopatia Gordurosa não Alcoólica/metabolismo , Sobrepeso/tratamento farmacológico , Sobrepeso/etiologia , Sobrepeso/fisiopatologia , Oxirredução , Palmitatos/toxicidade , Proteínas Proto-Oncogênicas c-akt/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Triglicerídeos/metabolismo
10.
Front Pharmacol ; 11: 561674, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33312125

RESUMO

Background: The pandemic of coronavirus disease 2019 (COVID-19) resulted in grave morbidity and mortality worldwide. There is currently no effective drug to cure COVID-19. Based on analyses of available data, we deduced that excessive prostaglandin E2 (PGE2) produced by cyclooxygenase-2 was a key pathological event of COVID-19. Methods: A prospective clinical study was conducted in one hospital for COVID-19 treatment with Celebrex to suppress the excessive PGE2 production. A total of 44 COVID-19 cases were enrolled, 37 cases in the experimental group received Celebrex as adjuvant (full dose: 0.2 g, bid; half dose: 0.2 g, qd) for 7-14 days, and the dosage and duration was adjusted for individuals, while seven cases in the control group received the standard therapy. The clinical outcomes were evaluated by measuring the urine PGE2 levels, lab tests, CT scans, vital signs, and other clinical data. The urine PGE2 levels were measured by mass spectrometry. The study was registered and can be accessed at http://www.chictr.org.cn/showproj.aspx?proj=50474. Results: The concentrations of PGE2 in urine samples of COVID-19 patients were significantly higher than those of PGE2 in urine samples of healthy individuals (mean value: 170 ng/ml vs 18.8 ng/ml, p < 0.01) and positively correlated with the progression of COVID-19. Among those 37 experimental cases, there were 10 cases with age over 60 years (27%, 10/37) and 13 cases (35%, 13/37) with preexisting conditions including cancer, atherosclerosis, and diabetes. Twenty-five cases had full dose, 11 cases with half dose of Celebrex, and one case with ibuprofen. The remission rates in midterm were 100%, 82%, and 57% of the full dose, half dose, and control group, respectively, and the discharged rate was 100% at the endpoint with Celebrex treatment. Celebrex significantly reduced the PGE2 levels and promoted recovery of ordinary and severe COVID-19. Furthermore, more complications, severity, and death rate were widely observed and reported in the COVID-19 group of elders and with comorbidities; however, this phenomenon did not appear in this particular Celebrex adjunctive treatment study. Conclusion: This clinical study indicates that Celebrex adjuvant treatment promotes the recovery of all types of COVID-19 and further reduces the mortality rate of elderly and those with comorbidities.

11.
Biochem Biophys Res Commun ; 529(2): 474-479, 2020 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-32703454

RESUMO

Currently, there is a growing interest in understanding the cellular and molecular events of immune-cell trafficking and recruitment of hepatic stellate cells (HSCs) in liver diseases. Aberrant activation of HSCs is the key event leading to chronic liver fibrosis. However, the underlying mechanisms of the recruitment of HSCs in a locally injured liver are not clearly understood. Here, we report a new experimental approach for the study of inflammatory responses as well as the recruitment of HSCs into the localized cryolesion. We observed a significant liver damage accompanied by the up-regulation of plasma ALT and AST. In addition, we also found increased levels of MCP-1, IL-6 and IL-10 cytokines. The peak cytokine levels were detected at 8 h after injury, followed by intrahepatic infiltration of neutrophils and monocytes into the injury site (from 8 h to day 3), while the kupffer cells (KCs) and HSCs were mainly detected on day 3 after injury. Interestingly, the depletion of KCs, but not neutrophils, reduced the directional recruitment and accumulation of HSCs at the injury site. Moreover, the combinatorial recruitment of KCs and HSCs resulted in the gradual restoration of fibrotic area to almost typical histological appearance on day 14 post-injury. In conclusion, our data demonstrated a localized infiltration and accumulation of neutrophils and monocytes at a "predefined loci", and further revealed that KCs are critical for the recruitment of HSCs during injury, and thus, may play an important role in tissue repair.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas/patologia , Células Estreladas do Fígado/patologia , Células de Kupffer/patologia , Cirrose Hepática/patologia , Animais , Tetracloreto de Carbono , Movimento Celular , Modelos Animais de Doenças , Feminino , Fígado/patologia , Camundongos Endogâmicos C57BL
12.
Nutr Metab (Lond) ; 17: 17, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32158492

RESUMO

BACKGROUND: Fatty liver is a reversible status, but also an origin stage to develop to other metabolic syndromes, such as diabetes and heart disease that threatens public health worldwide. Ascorbate deficiency is reported to be correlated with increasing risks for metabolic syndromes, but whether ascorbate has a therapeutic effect is unknown. Here, we investigated if ascorbate treatment alone could work on protecting from the development of steatosis and mechanisms beyond. METHODS: Guinea pigs were fed with a chow diet or a high palm oil diet (HPD) respectively. HPD induced animals were administered different concentrations of ascorbate in different time intervals through water. Besides, hepatocyte-like cells derived from human embryonic stem cells and HepG2 cells were treated with palmitic acid (PA) to induce lipid accumulation for molecular mechanism study. RESULTS: We find that ascorbate rescues HPD and PA induced steatosis and insulin tolerance in vivo and in vitro. We demonstrate that ascorbate changes cellular lipid profiles via inhibits lipogenesis, and inhibits the expression of SOCS3 via STAT3, thus enhances insulin signal transduction. Overexpression of SOCS3 abolishes the ascorbate rescue effects on insulin signal and lipid accumulation in hepatic cells. CONCLUSIONS: Ascorbate ameliorates hepatic steatosis and improves insulin sensitivity through inhibiting lipogenesis and SOCS3.

13.
Stem Cell Res Ther ; 10(1): 364, 2019 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-31791391

RESUMO

BACKGROUND: The limited proliferative ability of hepatocytes is a major limitation to meet their demand for cell-based therapy, bio-artificial liver device, and drug tests. One strategy is to amplify cells at the hepatoblast (HB) stage. However, expansion of HBs with their bipotency preserved is challenging. Most HB expansion methods hardly maintain the bipotency and also lack functional confirmation. METHODS: On the basis of analyzing and manipulating related signaling pathways during HB (derived from human induced pluripotent stem cells, iPSCs) differentiation and proliferation, we established a specific chemically defined cocktails to synergistically regulate the related signaling pathways that optimize the balance of HB proliferation ability and stemness maintenance, to expand the HBs and investigate their capacity for injured liver repopulation in immune-deficient mice. RESULTS: We found that the proliferative ability progressively declines during HB differentiation process. Small molecule activation of Wnt or inhibition of TGF-ß pathways promoted HB proliferation but diminished their bipotency, whereas activation of hedgehog (HH) signaling stimulated proliferation and sustained HB phenotypes. A cocktail synergistically regulating the BMP/WNT/TGF-ß/HH pathways created a fine balance for expansion and maintenance of the bipotency of HBs. After purification, colony formation, and expansion for 20 passages, HBs retained their RNA profile integrity, normal karyotype, and ability to differentiate into mature hepatocytes and cholangiocytes. Moreover, upon transplantation into liver injured mice, the expanded HBs could engraft and differentiate into mature human hepatocytes and repopulate liver tissue with restoring hepatocyte mass. CONCLUSION: Our data contribute to the understanding of some signaling pathways for human HB proliferation in vitro. Simultaneous BMP/HGF induction, activation of Wnt and HH, and inhibition of TGF-ß pathways created a reliable method for long-term stable large-scale expansion of HBs to obtain mature hepatocytes that may have substantial clinical applications.


Assuntos
Hepatócitos/metabolismo , Transdução de Sinais , Animais , Diferenciação Celular , Proliferação de Células , Modelos Animais de Doenças , Proteínas Hedgehog/metabolismo , Hepatócitos/citologia , Hepatócitos/transplante , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Falência Hepática/patologia , Falência Hepática/terapia , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Fator de Crescimento Transformador beta/metabolismo , Proteínas Wnt/metabolismo
14.
Stem Cell Res ; 29: 84-87, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29627726

RESUMO

MiR-122 is the most abundant miRNA in the human liver accounting for 52% of the entire hepatic miRNome. Previous studies have demonstrated that miR-122 is a valuable therapeutic target for liver diseases, including viral hepatitis, fibrosis, steatosis, and hepatocarcinoma. Here, we constructed a miR-122 doxycycline-inducible expression human embryonic stem cell line WAe001-A-15 using the piggyBac transposon system. The cell line retained its pluripotency, in vitro differentiation potential, normal morphology, and karyotype.


Assuntos
Doxiciclina/farmacologia , Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/metabolismo , MicroRNAs/biossíntese , Células-Tronco Pluripotentes/citologia , Células-Tronco Pluripotentes/metabolismo , Antibacterianos/farmacologia , Linhagem Celular , Elementos de DNA Transponíveis , Células-Tronco Embrionárias/efeitos dos fármacos , Humanos , Células-Tronco Pluripotentes/efeitos dos fármacos
15.
Stem Cell Res ; 24: 164-168, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-29034887

RESUMO

miR-122 is the most abundant miRNA in the human liver, accounting for 52% of the entire hepatic miRNome. Previous studies have demonstrated that miR-122 plays key roles in hepatocyte growth, metabolism, and homeostasis. Here, we created three miR-122 knockout human embryonic stem cell line lines, WAe001-A-7, WAe001-A-8, and WAe001-A-9, using the CRISPR/Cas9 technique. These mutated cell lines retained their pluripotency, in vitro differentiation potential, normal morphology, and karyotype.


Assuntos
Células-Tronco Embrionárias Humanas/metabolismo , MicroRNAs/genética , Linhagem Celular , Humanos , MicroRNAs/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...