Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Sci Pollut Res Int ; 30(52): 112686-112694, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37837593

RESUMO

Eutrophication is a severe worldwide concern caused by excessive phosphorus release. Thus, significant efforts have been made to develop phosphorus removal techniques, particularly by nanomaterial adsorption. However, because of the limitations associated with nanoparticles including easy agglomeration, and separation challenges, a novel nanocomposite adsorbent with great adsorption performance is urgently required. A sponge adsorbent (MS-CMC@La) was developed in this study to remove phosphorus using melamine sponge (MS), LaCl3, and sodium carboxymethyl cellulose (CMC). The results of SEM/EDS, FTIR, and XPS demonstrated that La was well-dispersed on MS-CMC@La. Adsorption isotherm and kinetics met with the Langmuir model (R2 = 0.981) and the pseudo-second-order kinetics (R2 = 0.989), respectively. The maximum adsorption capacity of MS-CMC@La was found to be 15.28 mg/g; the material exhibited excellent selectivity toward phosphorus in the presence of coexisting anion except of F-; the adsorption behavior was greatly impacted by pH. Furthermore, the electrostatic attraction, ligand exchange and inner-sphere coordination regulate the phosphate adsorption mechanism, with inner-sphere coordination dominating. In summary, the nano-enriched materials developed in this study are capable of facilitating the application of functionalized sponges in the field of wastewater.


Assuntos
Lantânio , Poluentes Químicos da Água , Fósforo , Fosfatos , Águas Residuárias , Adsorção , Cinética , Concentração de Íons de Hidrogênio
2.
Environ Sci Pollut Res Int ; 30(12): 33160-33169, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36474032

RESUMO

A novel adsorbent (FeOOH@PU) for hexavalent chromium [Cr(VI)] removal was synthesized using a polyurethane foam (PU) and FeOOH via a facile one-step method. Scanning electron microscopy (SEM), FTIR, X-ray photoelectron spectroscopy (XPS), and energy dispersive spectroscopy (EDS) characterized the adsorbent. The influence of environmental factors was investigated to evaluate the adsorption behavior for Cr(VI). Furthermore, adsorption dynamic and adsorption isotherm models described the adsorption performance. This adsorbent also treated electroplating wastewater and remediated simulated Cr(VI) contaminated soil. The adsorbent effectively removed Cr(VI) with a high adsorption rate; its equilibrium rate constant was 13 times that of FeOOH. Cr(VI) removal was a monolayer adsorption process and the maximum adsorption capacity of FeOOH@PU reached 34.9 mg Cr/g. Electrostatic attraction was the mechanism of Cr(VI) removal. Electroplating wastewater became clear and the Cr(VI) concentration decreased from 9.76 to 0.042 mg/L after treatment with FeOOH@PU. Cr enrichment in rice seedlings grown in remediated soil decreased from 7.687 to 6.295 mg Cr/kg. These results suggested that FeOOH@PU was a promising adsorbent for Cr(VI) removal and Cr(VI) stabilization.


Assuntos
Águas Residuárias , Poluentes Químicos da Água , Cromo/química , Microscopia Eletrônica de Varredura , Adsorção , Poluentes Químicos da Água/análise , Cinética , Concentração de Íons de Hidrogênio
3.
Chemosphere ; 312(Pt 1): 137155, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36372334

RESUMO

Microplastics (MPs) are persistent organic pollutants globally, with a continuous increase in MP wastes near and away from the regions of human activities. Studies to date aimed to explore the impact of MPs on ecosystems, but the area of research could not go beyond environmental pollution caused by MPs. To address the menace of MPs, scientists need to pay enough attention to the biogeochemical cycles, microbial communities, and functional microorganisms. Hence, this study aimed to evaluate the impact of adding 0.3% (mass ratio) [low-concentration (LC) group] and 1% [high-concentration (HC) group] of polyamide (PA) MP to the soil microenvironment with regard to the aforementioned parameters. PA MP decreased the soil microbial diversity (Shannon and Simpson indices, P < 0.05). At the phylum level, PA MP increased the abundance of Acidobacteria, Firmicutes, and Crenarchaeota (P < 0.05); at the genus level, it enhanced that of Geobacter, Thiobacillus, Pseudomonas, and Bradyrhizobium (P < 0.01) while decreased that of Bacillus, Flavisolibacter, Geothrix, and Pseudarthrobacter (P < 0.05). PA MP affected the carbon (C) cycle. PA MP accelerated the soil C fixation by enhancing the abundance of the genes accA and pccA. The LC PA MP accelerated organic C degradation and methane metabolism by changing the abundance of mnp, chiA, mcrA, pmoA, and mmoX genes, while the HC PA MP inhibited them with increasing the experimental time. Regarding the effects of PA on the nitrogen (N) cycle, the PA MP promoted N assimilation and ammonification by increasing the abundance of the genes gdh and ureC, the impact of PA MP on N fixation and denitrification depended on its concentration and treating time. This study showed that PA MP impacted the microbial consortium, it also affected the C and N cycles and its effect depended on its concentration and the treating time.


Assuntos
Microbiota , Microplásticos , Humanos , Solo/química , Plásticos/farmacologia , Nylons , Carbono/farmacologia , Consórcios Microbianos , Ciclo do Nitrogênio
4.
Environ Sci Pollut Res Int ; 29(46): 69491-69501, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35562612

RESUMO

Pseudomonas sp. Y-5, a strain with simultaneous nitrification and denitrification (SND) capacity, was isolated from the Wuhan Municipal Sewage Treatment Plant. This strain could rapidly remove high concentrations of inorganic nitrogen. Specifically, Pseudomonas sp. Y-5 removed 103 mg/L of NH4+-N in 24 h without nitrate or nitrite accumulation when NH4+-N was its sole nitrogen source. The NH4+-N removal efficiency (RE) was 97.26%, and the average removal rate (RR) was 4.30 mg/L/h. Strain Y-5 also removed NO3--N and NO2--N even in aerobic conditions, with average RRs of 4.39 and 4.23 mg/L/h, respectively, and REs of up to 99.34% and 95.81% within 24 h. When cultured in SND medium (SNDM-1), strain Y-5 achieved an NH4+-N RE of up to 97.80% and a total nitrogen (TN) RE of 93.01%, whereas NO3--N was fully depleted in 48 h. Interestingly, high nitrite concentrations did not inhibit the nitrification capacity of Y-5 when grown in SNDM-2, the RE of NH4+-N and TN reached 96.29% and 94.26%, respectively, and nitrite was consumed completely. Strain Y-5 also adapted well to high concentrations of ammonia (~401.68 mg NH4+-N/L) or organic nitrogen (~315.12 mg TN/L). Our results suggested that Pseudomonas sp. Y-5 achieved efficient simultaneous nitrification and denitrification, thus demonstrating its potential applicability in the treatment of nitrogen-polluted wastewater.


Assuntos
Nitrificação , Nitrogênio , Aerobiose , Amônia , Desnitrificação , Processos Heterotróficos , Nitratos , Nitritos , Dióxido de Nitrogênio , Pseudomonas , Esgotos , Águas Residuárias
5.
Sci Total Environ ; 818: 151768, 2022 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-34808183

RESUMO

Microplastics (MPs) are ubiquitous in farmland soils. However, few studies have evaluated their effects on the microbial community structure and nitrogen cycle of farmland soils. Here, 0.3% and 1% (mass percentage) of polyethylene terephthalate (PET), polyvinyl chloride (PVC), and polylactic acid (PLA) MPs were added to paddy soil to evaluate their impact on the paddy soil microenvironment. The alpha index of the PLA MP treatment was significantly different from that of the control group (p-value < 0.05). In contrast, the indices of the PET and PVC MP treatments were not different from the control (p-value > 0.05). Among the MP treatments, the alpha index of the PLA MP group was significantly different from the PET and PVC MP groups (p-value < 0.05). PCoA analysis also indicated that there were differences between PLA and other MP groups, and different MP concentrations and exposure times had a great impact on microbial composition. The three MPs affected NH4+ metabolism by changing the abundance of a NH2OH-forming gene (amoA) and an organic nitrogen-forming gene (gdh), as well as the abundances of Thiobacillus, Bradyrhizobium, Anaeromyxobacter, Geobacter, and Desulfobacca. Further, the MPs affected NO3- metabolism by regulating the abundance of the nirS and nirK genes and the abundance of Nitrospirae. In contrast, NO2- metabolism was not significantly affected by the MPs due to the low concentration of NO2-, which was attributed to the high abundance of nirS and nirK in the sample. Taken together, our findings indicated that MP addition may have an inhibitory effect on the nitrogen cycle in paddy soils and that the effect of degradable MPs may be greater than that of their non-degradable counterparts. Given the increasing severity of worldwide MP contamination, additional studies are required to assess their impact on global ecosystems and biogeochemical cycles.


Assuntos
Microbiota , Solo , Microplásticos , Ciclo do Nitrogênio , Plásticos , Microbiologia do Solo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...