Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Colloids Surf B Biointerfaces ; 222: 113084, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36549246

RESUMO

In order to not only improve the stability of nanomicelles in blood circulation but also promote the cellular uptake in tumors and rapidly release the encapsulated drugs in tumor cells, a kind of acid/reduction dual-sensitive amphiphilic graft polyurethane with folic acid and detachable poly(ethylene glycol) (FA-PUSS-gimi-mPEG) was synthesized by grafting folic acid and monomethoxy poly(ethylene glycol) to the polyurethane side chain. FA-PUSS-gimi-mPEG could self-assemble in aqueous solution to form negatively charged nanomicelles, which endowed them good stability under normal physiological condition. Using ultraviolet-visible spectrometer (UV-vis) and dynamic light scattering (DLS), it was found that the hydrophilic poly(ethylene glycol) layer of FA-PUSS-gimi-mPEG micelles could be detached due to the cleavage of benzoic-imine bond under slightly acidic condition, which resulted in reversing the charge of the micellar surface and exposing folic acid to the micellar surface. FA-PUSS-gimi-mPEG micelles could load doxorubicin (DOX), moreover the drug release rate was faster at pH 5.0 and 10 mM glutathione (GSH) than that under normal physiological condition. The results of cell experiments further demonstrated that FA-PUSS-gimi-mPEG micelles had acid/reduction dual-sensitive property. The changes in the structure of FA-PUSS-gimi-mPEG micelles could enhance the cellular uptake under acid condition and the micelles could accelerate the drug release in tumor cells due to the presence of disulfide bonds in the polymer. Therefore, FA-PUSS-gimi-mPEG micelles could efficiently deliver anticancer drug into tumor cells and enhance the inhibition of cellular proliferation through multi-effect synergy.


Assuntos
Antineoplásicos , Poliuretanos , Poliuretanos/farmacologia , Micelas , Ácido Fólico/farmacologia , Ácido Fólico/química , Antineoplásicos/farmacologia , Antineoplásicos/química , Polietilenoglicóis/química , Doxorrubicina/farmacologia , Doxorrubicina/química , Portadores de Fármacos/química , Sistemas de Liberação de Medicamentos , Sobrevivência Celular
2.
Colloids Surf B Biointerfaces ; 209(Pt 1): 112203, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34794067

RESUMO

In order to obtain drug delivery carriers with good stability in blood and high cellular uptake efficiency, carboxyl groups and tertiary amine groups were respectively introduced into polyurethane to synthesize two kinds of amphiphilic polyurethanes with opposite charges (PUC and PUN). Their structures were characterized by Fourier transform infrared (FTIR) spectroscopy, nuclear magnetic resonance (1H NMR) spectroscopy and gel permeation chromatography (GPC). PUC-PUN co-assembled nanomicelles were prepared by electrostatic interaction between PUC and PUN micelles, which showed acid-sensitive property. When the pH of the solution was decreased from 7.4 to 6.5, PUC-PUN-1 micelles showed negative-to-positive charge-reversal property among these micelles. The results of stability and cell experiments demonstrated that PUC-PUN-1 micelles not only had excellent stability in simulated normal physiological environment but also could obviously enhance the cellular uptake efficiency. PUC-PUN-1 micelles had low cytotoxicity against SGC-7901 and MGC-803 cells, whereas PUC-PUN-1/DOX micelles had higher cytotoxicity compared to pure DOX and PUN-1/DOX micelles. Moreover, the results of in vivo antitumor activity experiments showed that PUC-PUN-1/DOX micelles had better tumor inhibition ability and safety than pure DOX. In addition, the results of in vitro drug release experiments indicated that PUC-PUN-1/DOX micelles had almost no burst release or leakage of drugs in pH 7.4 environment. However, the drug release was accelerated in pH 5.0, which followed Fickian diffusion mechanism.


Assuntos
Portadores de Fármacos , Poliuretanos , Doxorrubicina/farmacologia , Sistemas de Liberação de Medicamentos , Liberação Controlada de Fármacos , Concentração de Íons de Hidrogênio , Micelas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...