Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Small ; : e2402589, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38881318

RESUMO

The fouling phenomenon of membranes has hindered the rapid development of separation technology in wastewater treatment. The integration of materials into membranes with both excellent separation performance and self-cleaning properties still pose challenges. Here, a self-assembled composite membrane with solar-driven self-cleaning performance is reported for the treatment of complex oil-water emulsions. The mechanical robustness of the composite membrane is enhanced by the electrostatic attraction between chitosan and metal-organic frameworks (MOF) CuCo-HHTP as well as the crosslinking effect of glutaraldehyde. Molecular dynamics (MD) simulations also revealed the hydrogen bonding interaction between chitosan and CuCo-HHTP. The composite membrane of CuCo-HHTP-5@CS/MPVDF exhibits a high flux ranging from 700.6 to 2350.6 L∙m-2∙h-1∙bar-1 and excellent separation efficiency (>99.0%) for various oil-water emulsions, including crude oil, kerosene, and other light oils. The addition of CuCo-HHTP shows remarkable photothermal effects, thus demonstrating excellent solar-driven self-cleaning capability and antibacterial performance (with an efficiency of ≈100%). Furthermore, CuCo-HHTP-5@CS/MPVDF can activate peroxomonosulfate (PMS) under sunlight, quickly removing oil-fouling and dyes. Density functional theory (DFT) calculations indicate that the bimetallic sites of Cu and Co in CuCo-HHTP effectively promoted the activation of PMS. This study provides distinctive insights into the multifaceted applications of MOFs-derived photothermal anti-fouling composite membranes.

2.
Biosens Bioelectron ; 257: 116330, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38677022

RESUMO

Perfluorooctanoic acid (PFOA) poses a threat to the environment and human health due to its persistence, bioaccumulation, and reproductive toxicity. Herein, a lanthanide metal-organic framework (Ln-MOF)-based surface molecularly imprinted polymers (SMIPs) ratiometric fluorescence probe (Eu/Tb-MOF@MIPs) and a smartphone-assisted portable device were developed for the detection of PFOA with high selectivity in real water samples. The integration of Eu/Tb MOFs as carriers not only had highly stable multiple emission signals but also prevented deformation of the imprinting cavity of MIPs. Meanwhile, the MIPs layer preserved the fluorescence of Ln-MOF and provided selective cavities for improved specificity. Molecular dynamics (MD) was employed to simulate the polymerization process of MIPs, revealing that the formation of multiple recognition sites was attributed to the establishment of hydrogen bonds between functional monomers and templates. The probe showed a good linear relationship with PFOA concentration in the range of 0.02-2.8 µM, by giving the limit of detection (LOD) of 0.98 nM. Additionally, The red-green-blue (RGB) values analysis based on the smartphone-assisted portable device demonstrated a linear relationship of 0.1-2.8 µM PFOA with the LOD of 3.26 nM. The developed probe and portable device sensing platform exhibit substantial potential for on-site detecting PFOA in practical applications and provide a reliable strategy for the intelligent identification of important targets in water environmental samples.


Assuntos
Técnicas Biossensoriais , Caprilatos , Corantes Fluorescentes , Fluorocarbonos , Estruturas Metalorgânicas , Polímeros Molecularmente Impressos , Smartphone , Poluentes Químicos da Água , Estruturas Metalorgânicas/química , Caprilatos/análise , Caprilatos/química , Corantes Fluorescentes/química , Técnicas Biossensoriais/instrumentação , Fluorocarbonos/química , Fluorocarbonos/análise , Polímeros Molecularmente Impressos/química , Poluentes Químicos da Água/análise , Limite de Detecção , Elementos da Série dos Lantanídeos/química , Espectrometria de Fluorescência/métodos , Humanos
3.
Small ; : e2401393, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38477692

RESUMO

Multiphase reactive flow in porous media is an important research topic in many natural and industrial processes. In the present work, photolithography is adopted to fabricate multicomponent mineral porous media in a microchannel, microfluidics experiments are conducted to capture the multiphase reactive flow, methyl violet 2B is employed to visualize the real-time concentration field of the acid solution and a sophisticated image processing method is developed to obtain the quantitative results of the distribution of different phases. With the advanced methods, experiments are conducted with different acid concentration and inlet velocity in different porous structures with different phenomena captured. Under a low acid concentration, the reaction will be single phase. In the gaseous cases with higher acid concentration, preferential flow paths with faster flow and reaction are formed by the multiphase hydrodynamic instabilities. In the experiments with different inlet velocities, it is observed that a higher inlet velocity will lead to a faster reaction but less gas bubbles generated. In contrast, more gas bubbles would be generated and block the flow and reaction under a lower inlet velocity. Finally, in heterogeneous structures, fractures or cavities would significantly redirect the flow and promote the formation of preferential flow path nearby.

4.
J Hazard Mater ; 469: 134090, 2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38513439

RESUMO

Effectively addressing crude oil spills remains a global challenge due to its high viscosity and limited flow characteristics. In this study, we successfully prepared a modified sponge (PCP@MS) by embedding the photothermal material of Co-HHTP and coating the melamine sponge (MS) with low-surface-energy polydimethylsiloxane (PDMS). The PCP@MS exhibited outstanding hydrophobicity with WCA of 160.2° and high oil absorption capacity of 59-107 g/g. The PCP@MS showed high separation efficiency of 99.2% for various oil-water mixtures, along with notable self-cleaning properties and mechanical stability. The internal micro-nano hierarchical structure on the sponge surface significantly enhanced light absorption, synergizing with the photo-thermal conversion properties of Co-HHTP, enabled PCP@MS to achieve a surface temperature of 109.2 °C under 1.0 solar light within 300 s. With the aid of solar radiation, PCP@MS is able to heat up quickly and successfully lowering the viscosity of the surrounding crude oil, resulting in an oil recovery rate of 8.76 g/min. Density functional theory (DFT) calculation results revealed that Co-HHTP featured a zero-gap band structure, rendering advantageous electronic properties for full-wavelength light absorption. This in situ solar-heated absorbent design is poised to advance the practical application of viscous oil spill cleanup and recovery.

5.
Small ; : e2310644, 2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38386306

RESUMO

Mixed matrix composite membranes (MMCMs) have shown advantages in reducing VOCs and CO2 emissions. Suitable composite layer, substrate, and good compatibility between the filler and the matrix in the composite layer are critical issues in designing MMCMs. This work develops a high-performance UiO-66-NA@PDMS/MCE for VOCs adsorption and CO2 permea-selectivity, based on a simple and facile fabrication of composite layer using amidation-reaction approach on the substrate. The composite layer shows a continuous morphological appearance without interface voids. This outstanding compatibility interaction between UiO-66-NH2 and PDMS is confirmed by molecular simulations. The Si─O functional group and UiO-66-NH2 in the layer leads to improved VOCs adsorption via active sites, skeleton interaction, electrostatic interaction, and van der Waals force. The layer and ─CONH─ also facilitate CO2 transport. The MMCMs show strong four VOCs adsorption and high CO2 permeance of 276.5 GPU with a selectivity of 36.2. The existence of VOCs in UiO-66-NA@PDMS/MCE increases the polarity and fine-tunes the pore size of UiO-66-NH2 , improving the affinity towards CO2 and thus promoting the permea-selectivity for CO2 , which is further verified by GCMC and EMD methods. This work is expected to offer a facile composite layer manufacturing method for MMCMs with high VOC adsorption and CO2 permea-selectivity.

6.
J Hazard Mater ; 458: 131941, 2023 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-37392644

RESUMO

A molecularly imprinted polymers (MIPs)-isolated AuNP-enhanced fluorescence sensor, AuNP@MIPs-CdTe QDs, was developed for highly sensitive and selective detection of oxytetracycline (OTC) in aqueous medium. The developed sensor combined the advantages of strong fluorescence signal of metal-enhanced fluorescence (MEF), high selectivity of MIPs, and stability of CdTe QDs. The MIPs shell with specific recognition served as an isolation layer to adjust the distance between AuNP and CdTe QDs to optimize the MEF system. The sensor demonstrated the detection limit as low as 5.22 nM (2.40 µg/L) for a concentration range of 0.1-3.0 µM OTC and good recovery rates of 96.0-103.0% in real water samples. In addition, high specificity recognition for OTC over its analogs was achieved with an imprinting factor of 6.10. Molecular dynamics (MD) simulation was utilized to simulate the polymerization process of MIPs and revealed H-bond formation as the mainly binding sites of APTES and OTC, and finite-difference time-domain (FDTD) analysis was employed to obtain the distribution of electromagnetic field (EM) for AuNP@MIPs-CdTe QDs. The experimental results combined with theoretical analyses not only provided a novel MIP-isolated MEF sensor with excellent detection performance for OTC but also established a theoretical basis for the development of a new generation of sensors.


Assuntos
Compostos de Cádmio , Impressão Molecular , Oxitetraciclina , Pontos Quânticos , Polímeros Molecularmente Impressos , Impressão Molecular/métodos , Pontos Quânticos/química , Compostos de Cádmio/química , Telúrio/química , Água , Limite de Detecção
7.
Artigo em Inglês | MEDLINE | ID: mdl-36833929

RESUMO

Due to the threats posed by many volatile organic compounds (VOCs) to human health in indoor spaces via air, the mass transfer characteristics of VOCs are of critical importance to the study of their mechanism and control. As a significant part of the mass transfer process, diffusion widely exists in emissions from floors (e.g., PVC floors) and in sorption in porous materials. Molecular simulation studies by can provide unparalleled insights into the molecular mechanisms of VOCs. We construct the detailed atomistic structures of PVC blend membranes to investigate the diffusion behavior of VOC molecules (n-hexane) in PVC by molecular dynamics (MD). The variation in the diffusion coefficient of n-hexane in PVC with respect to temperature is in line with Arrhenius' law. The effect of temperature on the diffusion mechanism was investigated from the perspectives of free volume, cavity distribution and polymer chain mobility. It was found that the relationships between the diffusion coefficients of n-hexane in the polymer and the inverse fractional free volume are exponential and agree well with the free volume theory. Hopefully, this study will offer quantitative insights into the mass transport phenomena of VOCs within polymeric materials.


Assuntos
Poluição do Ar em Ambientes Fechados , Compostos Orgânicos Voláteis , Humanos , Compostos Orgânicos Voláteis/análise , Poluição do Ar em Ambientes Fechados/análise , Simulação de Dinâmica Molecular , Cloreto de Polivinila , Difusão
8.
Chem Rev ; 123(3): 989-1039, 2023 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-36580359

RESUMO

Porous flow fields distribute fuel and oxygen for the electrochemical reactions of proton exchange membrane (PEM) fuel cells through their pore network instead of conventional flow channels. This type of flow fields has showed great promises in enhancing reactant supply, heat removal, and electrical conduction, reducing the concentration performance loss and improving operational stability for fuel cells. This review presents the research and development progress of porous flow fields with insights for next-generation PEM fuel cells of high power density (e.g., ∼9.0 kW L-1). Materials, fabrication methods, fundamentals, and fuel cell performance associated with porous flow fields are discussed in depth. Major challenges are described and explained, along with several future directions, including separated gas/liquid flow configurations, integrated porous structure, full morphology modeling, data-driven methods, and artificial intelligence-assisted design/optimization.

9.
ACS Omega ; 7(49): 45556-45561, 2022 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-36530319

RESUMO

Revealing the correlation between polarization curve and input parameters is a highly concerned topic in proton exchange membrane fuel cell (PEMFC) research. Till now, three-dimensional (3D) numerical models have been the most comprehensive methods to predict the polarization curve under variational conditions. However, due to the diversity and complexity of the parameters involved, an immense numerical or experimental burden is required to obtain the above-referred correlation based on 3D numerical model. Application of the similarity theory is considered as a promising breakthrough in PEMFC research to obtain generalized and compact laws. Activation criterion, a relative magnitude of the effect of temperature on electrochemical reaction rate versus the effect of activation overpotential, is the most important criterion on the PEMFC performance. Revealing its impact on the dimensionless polarization curve in the aspects of slope, intercept, and curvature is one of the major challenges for further investigation. Herein, a projection diagram is proposed to determine polarization curves under variation of activation criterion using similarity theory based on a series of results with other criteria variation. As a validation of the concept, two scenarios are exhibited by numerical approach. Results suggest that the maximum relative deviation of polarization curves predicted by the projection diagram is 0.14%, which reaches a high accuracy. The projection diagram reveals the reason why the activation criterion has a comprehensive and complex impact on the dimensionless polarization curve.

10.
Artigo em Inglês | MEDLINE | ID: mdl-36554770

RESUMO

To date, few studies have been conducted on the characteristics of flow and dispersion caused by indoor radiant floor heating integrated with natural ventilation. In this study, we employed reduced-scale numerical models validated by wind-tunnel experiments to investigate the influence of radiant floor heating integrated with natural ventilation on airflow, heat transfer, and pollutant dispersion within an isolated building. The Richardson number (Ri) was specified to characterize the interaction between the inflow inertia force and the buoyancy force caused by radiant floor heating. Several Ri cases from 0 to 26.65, coupled with cross- or single-sided ventilation, were considered. Model validation showed that the numerical model coupled with the RNG k-ε model was able to better predict the indoor buoyant flow and pollutant dispersion. The results showed that the similarity criterion of Ri equality should be first satisfied in order to study indoor mixed convection using the reduced-scale model, followed by Re-independence. For cross-ventilation, when Ri < 5.31, the incoming flow inertia force mainly dominates the indoor flow structure so that the ACH, indoor temperature, and pollutant distributions remain almost constant. When Ri > 5.31, the thermal buoyancy force becomes increasingly important, causing significant changes in indoor flow structures. However, for single-sided ventilation, when Ri > 5.31 and continues to increase, the buoyancy force mainly dominates the indoor flow structure, causing a significant increase in ACH, thus reducing the indoor average temperature and pollutant accumulation.


Assuntos
Poluição do Ar em Ambientes Fechados , Poluentes Ambientais , Modelos Teóricos , Calefação , Temperatura , Temperatura Alta , Ventilação
11.
Bioresour Technol ; 347: 126693, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35017094

RESUMO

This study investigated the effects of calcium hypochlorite (Ca(ClO)2) on biomethane generation from sludge two-phase anaerobic digestion system. In first (acidogenic) phase, volatile fatty acids (VFAs) were largely generated when pretreated by Ca(ClO)2, while the methane yield was severely inhibited. In second (methanogenic) phase, the methane yield was observably enhanced by Ca(ClO)2. Further calculation showed that the total methane yield from the two phases was firstly promoted from 156.0 ± 4.5 to 269.9 ± 5.2 mL when Ca(ClO)2 dosage enhanced from 0 to 1.6 g/L, which then reduced to 235.4 ± 5.5 mL when Ca(ClO)2 content reached 2.0 g/L. Mechanism analysis showed that the suppression of Ca(ClO)2 on coenzyme F420 activity was relieved in methanogenic phase, and the abundances of functional microbes in methanogenic phase were enriched when added with Ca(ClO)2. The Ca(ClO)2-based method well realized the balance between efficacy and economy, possessing outstanding potential for large-scale applications.


Assuntos
Metano , Esgotos , Anaerobiose , Reatores Biológicos , Compostos de Cálcio , Eliminação de Resíduos Líquidos
12.
Build Simul ; 15(7): 1259-1276, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34659649

RESUMO

This study conducted the numerical models validated by wind-tunnel experiments to investigate the issues of Re-independence of indoor airflow and pollutant dispersion within an isolated building. The window Reynolds number (Re w ) was specified to characterize the indoor flow and dispersion. The indicators of RRC (ratio of relative change) or DR (K_DR) (difference ratio of dimensionless concentration) ≤ 5% were applied to quantitatively determine the critical Re w for indoor flow and turbulent diffusion. The results show that the critical Re (Re crit) value is position-dependent, and Re crit at the most unfavorable position should be suggested as the optimal value within the whole areas of interest. Thus Re H,crit = 27,000 is recommended for the outdoor flows; while Re w,crit = 15,000 is determined for the indoor flows due to the lower part below the window showing the most unfavorable. The suggested Re w,crit (=15,000) for indoor airflow and cross ventilation is independence of the window size. Moreover, taking K_DR ≤ 5% as the indicator, the suggested Re w,crit for ensuring indoor pollutant diffusion enter the Re-independence regime should also be 15,000, indicating that indoor passive diffusion is completely determined by the flow structures. The contours of dimensionless velocity (U/U 0) and concentration (K) against the increasing Re w further confirmed this critical value. This study further reveals the Re-independence issues for indoor flow and dispersion to ensure the reliability of the data obtained by reduced-scale numerical or wind-tunnel models.

13.
Indoor Air ; 31(6): 2312-2328, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-33969921

RESUMO

In this paper, a three-dimensional non-isothermal computational model for predicting indoor SVOC distribution is proposed, considering the effects of turbulence diffusion and suspended particles. The realizable k-ε model is introduced for turbulent flow simulation in a room. The Euler-Euler method is adopted to deal with the gas-particle two-phase flow coupled problem. Inertia slip velocity and irreversible first-order absorption boundary are employed for more accurate prediction of particle motion. The simulated curve of outlet gas-phase di-2-ethylhexyl phthalate (DEHP) concentration with emission time is verified by available experimental data. The emission process of DEHP in a 15 m2 room in Beijing during 100 days with or without air cleaner is simulated by the developed model considering air leak through window and door gaps. It is found that if the air cleaner keeps on all the time during 100 days the gas-phase DEHP concentration in the room will tend to be uniform, while the emission process is far from equilibrium without an air cleaner even the emission lasts 100 days. Results also suggest that floor heating, decrease of particle concentration, weaken of heat transfer, enhancement of mass transfer, and air infiltration in window gap contribute to decrease DEHP concentration.


Assuntos
Poluição do Ar em Ambientes Fechados , Dietilexilftalato , Compostos Orgânicos Voláteis , Poluição do Ar em Ambientes Fechados/análise , Pequim , Dietilexilftalato/análise , Pisos e Cobertura de Pisos
14.
Sci Total Environ ; 781: 146685, 2021 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-33798880

RESUMO

Anaerobic fermentation is an eco-friendly technology for waste activated sludge (WAS) treatment, during which resource recycle can be achieved. However, traditional sludge anaerobic fermentation is limited by the poor efficiency. We herein reported a novel high-efficiency technology by combining freezing with potassium ferrate (PF) for sludge pretreatment to promote hydrogen production from anaerobic fermentation. Experimental results demonstrated that freezing coupled with PF pretreatment exerted positively synergetic effect on hydrogen production. The maximal hydrogen production of 12.50 mL/g VSS (volatile suspended solids) was detected in the fermenter pretreated by freezing (-12 °C for 24 h) coupled with PF at 0.15 g/g TSS (total suspended solids), which was 1.34, 2.33, and 7.91 times of that from the individual PF, individual freezing, and control fermenters, respectively. The simulation results based on the modified Gompertz model indicated that both the hydrogen production potential and rate were promoted by freezing coupled with 0.15 g/g TSS PF pretreatment, from 2.14 to 13.52 mL/g VSS and 0.012 to 0.163 mL/g VSS/h, respectively. Thorough mechanism investigations revealed that the sludge EPS (extracellular polymeric substances) and microbial cells were both effectively damaged by combined freezing and PF pretreatment, resulting in the acceleration of sludge disintegration. Further investigations demonstrated that except for the acidogenesis, the other biochemical processes were all inhibited by freezing coupled with PF pretreatment, but the inhibitory extent for hydrogen consuming processes was more serious than that responsible for its generation. Gene sequencing analysis illuminated that both of the hydrolytic and hydrogen generating bacteria were largely enriched in the combined pretreatment fermenter. Moreover, the dewatering performances of fermented sludge were found to be notably enhanced by freezing coupled with PF pretreatment.


Assuntos
Hidrogênio , Esgotos , Anaerobiose , Ácidos Graxos Voláteis , Fermentação , Congelamento , Concentração de Íons de Hidrogênio , Compostos de Ferro , Compostos de Potássio
15.
Bioresour Technol ; 332: 125112, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33857862

RESUMO

This study proposed a novel sludge pretreatment technology by combining freezing with potassium ferrate (PF) for synergistically enhancing the methane yield from sludge anaerobic digestion. Experimental results showed that the methane production was promoted from 170.1 ± 5.6 to 223.8 ± 7.0 mL/g VSS (volatile suspended solids) when pretreated by freezing coupled with 0.05 g/g TSS (total suspended solids) PF, with 31.6% increase. Kinetic model analysis indicated that the methane production potential and hydrolysis rate of sludge after combined pretreatment were enhanced by 32.0% and 15.0%, respectively. Mechanism studies revealed that freezing coupled with PF pretreatment effectively disrupted both extracellular polymeric substances (EPS) and microbial cells in sludge, consequently resulted in violent sludge disintegration. All the microbes responsible for hydrolysis, acidification and methanogenesis were found to be enriched by co-treatment of freezing and PF. Moreover, the fecal coliform in pretreated sludge was largely inactivated after anaerobic digestion.


Assuntos
Esgotos , Eliminação de Resíduos Líquidos , Anaerobiose , Reatores Biológicos , Congelamento , Compostos de Ferro , Metano , Compostos de Potássio
16.
Bioresour Technol ; 333: 125182, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33906015

RESUMO

A new hybrid system is proposed to capture CO2 as well as generate electricity with the low CO2 inlet condition of confined space. Within the system, a novel photocatalytic porous framework coated by g-C3N4/TiO2 is prepared to avoid the inhibition of microalgae growth caused by the direct addition of photocatalyst. Under 0.8% v/v CO2 inlet condition, chemical oxygen demand (COD) yields from the photocatalytic framework immersed in the phosphate buffer and the algae suspension are 1.63 mg L-1 h-1 and 1.90 mg L-1 h-1, respectively. CO2 sequestration rate of a 60L cylindrical photobioreactor increases from 12% to 22%. The combination modes between photobioreactor and photocatalytic framework can be selected flexibly depends on the demands of application. This hybrid system not only benefits to enhance the CO2 sequestration rate of photobioreactor but also has the potential to be served as the power source in a confined space.


Assuntos
Fontes de Energia Bioelétrica , Microalgas , Dióxido de Carbono , Sequestro de Carbono , Fotobiorreatores , Porosidade
17.
J Colloid Interface Sci ; 584: 403-410, 2021 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-33091865

RESUMO

HYPOTHESIS: Freezing morphologies of impacting water droplets depend on the interaction between droplet spreading and solidification. The existing studies showed that the shape of frozen droplets mostly is of spherical cap with a singular tip, because of much shorter timescale of the droplet spreading than that of the solidification. Here, we create the experimental conditions of extended droplet spreading and greatly enhanced heat transfer for fast solidification, thereby allowing to study such droplet freezing process under the strong coupling of the droplet spreading and solidification. EXPERIMENTS: We design experiments that a room-temperature water droplet impacts on a subcooled superhydrophilic surface in an enclosure chamber filled with nitrogen gas. We thoroughly investigate the freezing processes of impacting droplets under the effects of impact velocity and substrate temperature. Both the droplet impact dynamics and solidification are studied with a high-speed camera. FINDINGS: We observed five different freezing morphologies which depend on the droplet impact velocity and substrate temperature. We found that the formation of diverse morphologies results from the competitive timescales related to droplet solidification and impact hydrodynamics. We also develop a phase diagram based on scaling analysis and show how freezing morphologies are controlled by droplet impact and freezing related timescales.

18.
Langmuir ; 36(45): 13725-13734, 2020 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-33147409

RESUMO

Questions regarding bubble nucleation on an ideally smooth surface are seemingly endless, but it can not be adequately verified yet because of the scale limitation (microscopic scale). Hence, in this study, bubble nucleation on an ideally smooth substrate is explored using the molecular dynamics simulation method. An ideally smooth hydrophilic platinum substrate at 145 K is conducted to heat the simple L-J liquid argon. Results show that a visible bubble nucleus successfully forms on the ideally smooth substrate without any additional disturbance, which is common in boiling studies using the traditional numerical simulation methods. However, the nucleation position is unpredictable. At the atomic level, the thermal energy transfer from an ideally smooth substrate to liquid atoms is inhomogeneous due to atomic inhomogeneous distribution and irregular movement, which are the key influencing factors for achieving bubble nucleation. The inhomogeneity will be highlighted with the heating process. As a result, some local liquid atoms near the ideally smooth surface absorb more thermal energy to overcome their potential barrier at a specific moment, causing the emergence of a distinct nucleus there. Furthermore, nanostructure substrates are introduced to make a comparison with the smooth substrate in bubble nucleation. There is no significant difference in the inception temperature of nucleation between the ideally smooth and nanostructure substrates, but the latter has better performance in improving the bubble nucleation rate.

19.
Anal Chim Acta ; 1131: 68-79, 2020 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-32928481

RESUMO

Accurate, simple and quick detection methods for Cr(VI) detection are urgently needed for water quality monitoring. Herein, a novel and facile method of detecting Cr(VI) (Cr2O72-/CrO42-) ions is developed via the fluorescent detection technology based on metal-organic frameworks (MOFs) doped with sulfur quantum dots (SQDs) (SQDs@UiO-66-NH2). The blue-light-emitting SQDs@UiO-66-NH2 composites exhibit excellent fluorescent properties in water environment with high quantum yield (68%) and ideal fluorescent stability, thus demonstrating excellent potential for serving as a chemical sensor. After characterizing the performance and stability of SQDs@UiO-66-NH2, qualitative and quantitative detection of Cr2O72- and CrO42- ions was successfully conducted. The fluorescence of SQDs@UiO-66-NH2 composites in aqueous solution was quenched effectively with more than 90% quenching efficiency by Cr(VI) via the inner filter effect. The detection system provides considerable advantages such as rapid response (10 s), high sensitivity with a low detection limit of 0.16 µM in a broad linear range of 0-200 µM (R2 = 0.99) for Cr2O72- and 0.17 µM for CrO42- in a broad linear range of 0-220 µM (R2 = 0.99), high selectivity and reproducibility for at least five cycles with simple washing with alcohol. In practical applications, the sensor showed rapid response, high sensitivity and excellent recoveries (96.7%-105.4%) for detecting Cr2O72- in real water samples. Furthermore, a SQDs@UiO-66-NH2-based fluorescent test paper was successfully developed, providing a simple, reliable and portable method for Cr(VI) (Cr2O72-/CrO42-) detection in water environment.

20.
Bioresour Technol ; 317: 124022, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32829117

RESUMO

This study investigated the issue of potassium ferrate (PF) affecting anaerobic methane generation from sludge by a set of experimental and model analyses. Experimental results indicated that the methane production was significantly promoted from 164.7 to 204.1 mL/g VSS (volatile suspended solids) with PF dosage enhanced from 0 to 0.05 g/g TSS (total suspended solids). Further enhancement of PF dosage reduced methane production, which even decreased to 135.4 mL/g VSS when PF dosage increased to 0.1 g/g TSS. Model-based analysis showed that except for methane production potential, the methane production rate was also promoted by PF treatment, which was sufficiently enhanced from 8.80 to 11.88 mL/g VSS/d when PF dosage was 0.05 g/g TSS. Mechanism studies indicated that PF not only promoted sludge disintegration, but also enhanced the proportion of biodegradable organics in sludge liquor, and the digestion potential of the non-biodegradable humus and lignocellulose were promoted.


Assuntos
Esgotos , Eliminação de Resíduos Líquidos , Anaerobiose , Reatores Biológicos , Compostos de Ferro , Metano , Compostos de Potássio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...